Динамическая головка

Акустические системы: строение динамика (часть 2)

В первой части мы говорили о сущности, природе звука, особенностях его распространения и восприятия. Пора переходить к устройствам, которые способны этот звук воспроизвести. Наиболее распространенный по сей день вариант — динамик. Это устройство в свое время вызвало настоящий переворот в области музыкальной инженерии. Его принципиальная простота и, одновременно, сложность деталей, однозначно достойны пристального внимания.

Появление динамика

С началом активного использования электричества появилась возможность передавать звуковой сигнал, преобразуя его в электрический и обратно. В разное время изобрели много способов этого преобразования. Среди них — электродинамический, электростатический, изодинамический, ленточный, излучатель Хейла, пьезо и даже плазменный излучатель.

Они работают на разных физических принципах, различаются спецификой применения. Но самым первым все-таки было устройство, реализующее электродинамический принцип. Оно и остается самым распространенным. Динамик, электродинамическая головка, динамический драйвер — все эти термины являются синонимами к одному и тому же изобретению.

Слева — Ханс Эрстед. Справа — первая коммерческая версия электродинамического излучателя (6-дюймовый динамик, стоимость — около $3000 в современном эквиваленте)

Физические принципы, на которых работает динамик, основаны на электромагнетизме, открытом Хансом Эрстедом и описанном впоследствии целой плеядой физиков 19-го века. Тот факт, что проводник с током выталкивается магнитным полем, а в проводнике, движущемся в этом поле, наоборот, возникает ток, собственно, и привел к изобретению динамика.

Первое устройство, в котором применены все основные конструктивные принципы современного динамика, было запатентовано в 1898 году Оливером Лоджем после приблизительно тридцати лет самых разных попыток нащупать эффективный способ реализации. А сам динамик, в том виде, к которому мы все привыкли, появился спустя еще приблизительно тридцать лет.

С тех пор принципы его работы и основные элементы конструкции остаются неизменными. При этом, — вот что особенно удивительно, — не проходит и года без информации об очередном революционном усовершенствовании динамика, позволяющего ему работать еще лучше.

Устройство динамика

Любой современный динамик включает в себя каркас [1], который еще называют корзиной или даже пауком. На нем держатся все остальные части конструкции.

В тыльной части корзины крепится магнитная система, которая состоит из кольцевого магнита [2] и магнитного керна [3] — вместе они образуют кольцевой зазор. Этот магнитный зазор, кольцевая щель между двумя магнитами, должна быть минимальной для создания максимально мощного магнитного поля.

В зазоре расположена так называемая голосовая (звуковая) катушка [4], которая может совершать возвратно-поступательные движения под воздействием магнитного поля, поскольку по ней протекает переменный ток, соответствующий по форме воспроизводимым звуковым колебаниям. Она, как правило, состоит из проволоки, покрытой изолирующим лаком и намотанной на тонкостенный цилиндр, который называют каркасом [5] звуковой катушки.

Он крепится к диффузору [6] — тонкостенному элементу конструкции, который, колеблясь, собственно, и воспроизводит звук. Для этой цели диффузор должен иметь возможность двигаться. Для этого установлены так называемые подвесы [7, 8]: верхний (наружный) и нижний. Это шайбы из тонкого и гибкого материала с концентрическими выпуклостями. Благодаря такой форме, подвесы позволяют диффузору двигаться вдоль оси симметрии всей конструкции вперед-назад.

Он делает это потому, что его толкает голосовая катушка, на которую действует электромагнитная сила, пропорциональная силе переменного тока, который подается на катушку по гибким безмоментным проводникам [9]. С другой стороны эти провода заканчиваются клеммами [10], к которым подсоединяется акустический кабель, идущий от усилителя.

Завершает картину пылезащитный колпачок [11], который крепится к диффузору спереди и, что понятно из названия, защищает магнитный зазор от проникновения в него частичек пыли.

Разнообразие динамиков огромно. Они различаются по мощности, рабочему диапазону воспроизводимых частот, сфере применения и по множеству других параметров. Естественно, от этого зависят технологии и материалы, применяемые в производстве каждой из частей. Их мы и рассмотрим по отдельности.

Диффузор

Изначально диффузор делался из целлюлозы — бумаги или картона. Из того же материала выполнялся и пылезащитный колпачок (если он был предусмотрен). Целлюлозные диффузоры очень часто применяются до сих пор. Бумага хороша своим сочетанием легкости и жесткости. Влагоустойчивости, прочности и долговечности ей добавляют с помощью пропитки синтетическими материалами.

В этом смысле хорош пластик, но чисто пластиковый некомпозитный диффузор имеет ряд недостатков. Для их исправления применяются композитные материалы с разнообразными компонентами: от древесных или стеклянных волокон до кевлара или даже графена. Повышенную жесткость имеют металлические диффузоры. Чаще всего они делаются из алюминиевых сплавов.

Читайте также:
Самодельный ламповый усилитель звука - схема, видео

Одними из лучших параметров обладает бериллий, но, ввиду повышенной стоимости материала и технологий его обработки, такой вариант достаточно дорог. В так называемых купольных высокочастотных динамиках чаще всего применяется ткань с пропиткой, иногда армирующая слой максимально жесткого композита, с жестким наполнителем, вплоть до алмазного порошка.

Важнейшие требования к диффузору — минимум собственных резонансов и максимальная жесткость, при которой становится возможным «поршневой» режим движения диффузора по всей его площади. Эти параметры должны сочетаться с важнейшими требованиями к весу подвижной системы динамика — он должен быть минимальным. Таким образом, качественный диффузор всегда является компромиссом взаимоконфликтующих условий.

Подвес динамика

Внутренний (ближний к магниту) подвес динамика еще называют центрирующей шайбой. Чаще всего эту деталь формуют на прессе с нагреванием из легкой, крепкой на разрыв ткани с эластичной синтетической пропиткой — прочно и подвижно. В некоторых мощных низкочастотных динамиках применяются две центрирующие шайбы, расположенные одна за другой.

С внешним подвесом все немного сложнее. Изначально он делался в виде концентрических волн (гофров) по внешнему краю бумажного диффузора. Так в некоторых случаях поступают и сейчас, добавляя синтетическую пропитку зоны гофров. Для больших амплитуд колебаний внешний подвес делают из резины, чаще всего это — искусственный бутадиеновый каучук. Резиновый подвес в сечении, в большинстве случаев, представляет собой выпуклую дугу. Есть варианты и «многоволновых» резиновых подвесов, либо применения других профилей, в том числе и переменных по углу.

Оба подвеса должны обеспечить строго плоско-параллельное возвратно-поступательное движение всей подвижной системы динамика с минимальными отклонениями в сторону от его оси.

Звуковая (голосовая) катушка

Эта катушка, работающая в магнитном зазоре динамика, намотана на каркас — цилиндр, который часто делается из плотной бумаги. Для каркаса также применяется устойчивый к нагреву пластик: каптон, текстолит, либо другие композитные материалы. Для большей плотности и температурной устойчивости (при серьезной нагрузке, т. е. громкости, катушка нагревается) используют сплавы на основе алюминия и даже титан.

Проволока, которой наматывается голосовая катушка, чаще всего, медная. Алюминиевая проволока легче, и это в данном случае — плюс, но она имеет свои недостатки (большее электрическое сопротивление при меньшей температурной устойчивости) и применяется реже. Есть вариант с биметаллической алюминиевой проволокой с медным покрытием, что улучшает проводимость.

Для более плотного расположения витков проволоку иногда делают в сечении прямоугольной либо шестиугольной. Для получения нескольких вариантов сопротивления катушки при параллельном или последовательном соединении ее частей или использования раздельных усилителей, звуковая катушка, чаще всего в низкочастотных динамиках, может разделяться на отдельные секции, намотанные на общем каркасе.

Для лучшего охлаждения голосовой катушки магнитный зазор в некоторых высокочастотных динамиках заполняется специальной жидкостью с наполнителем из мелкодисперсного магнитного порошка. Это повышает эффективность системы и улучшает отвод тепла.

Магнитная система

Эффективность магнитной системы динамика определяется, в первую очередь, материалом магнита. Самый распространенный — феррит. В середине прошлого века были распространены магниты из сплава AlNiCo (железо-алюминий-никель-кобальт), в отдельных случаях этот вариант до сих пор применяется. В новейший исторический период все большее распространение получают неодимовые магниты, создающие гораздо более сильное магнитное поле. Проблемой здесь стало получение неодимовой заготовки нужных размеров: неодим — материал труднообрабатываемый. Кроме того, стоимость неодимовых магнитов в последнее время растет.

Корзина динамика

Самый распространенный и максимально технологичный вариант корзины, или каркаса динамика — штампованная деталь из мягкой стали. Каркасы небольшого размера могут быть выполнены из пластика. Более совершенное, прочное и, что самое главное, точное в своей геометрии изделие получают методом литья, чаще всего из алюминия, с последующей обработкой на металлорежущих станках.

Важно понимать: чтобы добиться минимального магнитного зазора, звуковую катушку, расположенную в этом зазоре, нужно заставить двигаться, не задевая его краев. Для этого ее движение должно быть идеально соосным магнитному зазору вдоль всей возможной амплитуды колебаний. Расположение катушки в магнитном зазоре должно быть идеально симметричным. Это накладывает высокие требования на точность изготовления и сборки всех частей.

Все компоненты динамика соединяются с помощью клея на специальном оборудовании.

Каждый динамик, согласно примененным в нем материалам и технологиям, размерам, весу, электрическим и механическим параметрам, имеет свое в точности определенное назначение. О этом предназначении и обо всем, что с ним связано — в следующей части.

Читайте также:
Как сделать простой усилитель звука на транзисторах?

Другие материалы цикла «Акустические системы»:

Динамические головки

Сферический динамик «Плутон»

Динамик «Плутон» относиться к электронной акустике и используется в акустических системах. Данный вид динамика создан для повышения уровня КПД и общего качество воспроизведения звука.

Сказ про широкополосный динамик

Звук — неотъемлемая часть человеческого общества. С первым жизненным вздохом человек слышит самые разные звуки. Именно поэтому невозможно представить себе беззвучную современную цивилизацию. Технологии проникли во все уголки жизнедеятельности человека, они же позволяют получать широчайший диапазон самых разных звуков.

Низкочастотный громкоговоритель с плоским диффузором и его применение

Изобретение относится к области акустики, и в частности, к аудиотехнике. Расскажем про патент на НЧ динамик с плоским диффузором.

Что такое СЧ динамики?

Современный мир трудно представить без акустических систем, представленных широчайшим ассортиментов, удовлетворяющим самых утонченные запросы настоящим меломанов. А ведь все начиналось с банальной попытки вообще что-то услышать на расстоянии. Речь о качестве звука, о его высоко, средне или низкочастотном диапазоне не шла в принципе, по причине полного неведения.

Пьезокерамические (пьезопленочные) излучатели звука

Среди значительного разнообразия электроакустических преобразователей отдельный сектор занимают отличающиеся от классических конструкций пьезопленочные (прежнее название пьезокерамические) вариации излучателей.

Что такое НЧ динамик?

Низкочастотные динамики являются важным компонентом многополосных акустических систем. Эти излучатели не только должны уверенно отрабатывать сам басовый диапазон, но и значительную область СЧ в двухполосных конструкциях.

НЧ-динамики (или, как их иногда еще называют, вуферы), как правило, имеют значительный диаметр и мощную магнитную систему. Это связано с тем, что им необходимо прокачивать значительный объем воздуха для создания убедительного звукового давления в комнате прослушивания и увеличению эффекта присутствия при просмотре фильмов или прослушивании музыки.

Патент: Коаксиальная акустическая система с рупорным ВЧ динамиком

Изобретение относится к области электроакустики, а именно к конструкциям коаксиальных акустических систем с рупорным высокочастотным громкоговорителем, и может быть использовано для высококачественного воспроизведения звука.

Известна коаксиальная акустическая система, включающая диффузор, прикрепленный при помощи гофра и центрирующей шайбы к диффузородержателю, соединенному со звуковой катушкой, магнитную систему, установленный по центру диффузора высокочастотный громкоговоритель с рупором (см. заявка РСТ WO 94/03024, МПК 7 Н 04 R 9/06, 1994).

Электродинамическая головка с нанодисперсной магнитной жидкостью

Предлагаемое изобретение относится к звуковоспроизводящей технике и может применяться при изготовлении электродинамических громкоговорителей.

Широко известны электродинамические головки (Эфрусси М.М. Громкоговорители и их применение. М.: Энергия, 1971, с.11), содержащие диффузородержатель, диффузор, звуковую катушку, магнитную систему, состоящую из постоянного магнита, двух фланцев, керна, при этом керн образует с одним из фланцев рабочий зазор.

Электродинамический преобразователь с эффективным охлаждением

Изобретение относится к электромеханическим преобразователям. В электродинамическом преобразователе с эффективным охлаждением, состоящем из магнитной цепи с кольцевым зазором, образуемым ее полюсами, расположена силовая (звуковая) катушка. Катушка может перемещаться под действием протекающего по ней переменного тока.

Ленточные громкоговорители

Конструкцию ленточных громкоговорителей запатентовал в 1928 году инженер Gerlah из European Acoustic Laboratories. Однако начать их производство оказалось возможным только в 30-е годы, когда появились постоянные магниты.

Динамическая головка Волегова В.Е.

Изобретение относится к области электроакустики, в частности к формированию акустического излучения и конструкциям магнитных систем электроакустических преобразователей.

Благодаря исполнению электроакустический преобразователь имеет высокий КПД и незначительные нелинейные искажения.

Устройство динамика (громкоговорителя)

Устройство, обозначение и основные параметры электродинамического громкоговорителя

Для начала расставим все точки над “i” и разберёмся в терминологии.

Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

Как устроен динамик?

Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

Читайте также:
Как сделать цветомузыку для дома своими руками: схемы, фото

Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит. Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном. Фланцы, керн и кольцевой магнит формируют магнитную цепь.

Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой. Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы. Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

Диффузор укреплён на металлическом корпусе – корзине. Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес, а нижний подвес – это центрирующая шайба.

Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

Как работает динамик?

Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

Обозначение динамика на схеме.

Условное графическое обозначение динамика имеет следующий вид.

Рядом с обозначением пишутся буквы B или BA, а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т.д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

Основные параметры звукового динамика.

Основные параметры звукового динамика, на которые следует обращать внимание:

Номинальное электрическое сопротивление (Ом). Медный провод звуковой катушки обладает активным сопротивлением. Активное сопротивление – это сопротивление провода при постоянном токе. Его можно легко измерить с помощью цифрового мультиметра в режиме омметра. Читайте измерение сопротивления цифровым мультиметром.

Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm.

Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

Читайте также:
Схема профессионального микрофонного предусилителя

Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо :).

Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ), среднечастотную (СЧ) и высокочастотную (ВЧ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт) и милливаттах (мВт). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть здесь.

Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.

Порой на практике приходится соединять несколько динамиков или акустических систем. А что нужно знать при этом? Подробности в статье – Как соединять динамики?

Динамические головки в Москве

тип АС: полочная, активная, фазоинверторного типа, назначение: мониторный громкоговоритель, 80 Вт, 50-20000 Гц, Bi-amping, 197x301x262 мм

Самовывоз, Почта РФ, Курьером, Логистическая компания

Акустическая система Pioneer S-DJ50X

Visaton FRWS 5/4 – широкополосный динамик с квадратной сеткой. 5см (2 дюйма) широкополосная динамическая головка с мягким подвесом и легким диффузором. Сбалансированная частотная характеристика свыше 250 Гц, чистое воспроизведение высших частот и широкая диаграмма напра.

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный широкополосный Visat.

тип АС: полочная, активная, фазоинверторного типа, назначение: мониторный громкоговоритель, 90 Вт, 40-20000 Гц, Bi-amping, 276x401x315 мм

Читайте также:
Схема усилителя звука 30 ватт

Самовывоз, Почта РФ, Курьером, Логистическая компания

Акустическая система Pioneer S-DJ80X

Visaton DT 94/8 ВЧ динамик 20-миллиметровая (0,8-дюймовая) Hi-Fi высокочастотная динамическая головка с куполом из поликарбоната круглой формы, предназначена для высокочастотного диапазона свыше 3000 Гц

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный ВЧ Visaton DT 94/8

Акуст. система, 10“, 2-полосная, активная 500 Вт, 124 dB, управление по Bluetooth, 12 кг, 52 Гц – 20 кГц

Самовывоз, Почта РФ, Курьером, Логистическая компания

JBL EON610/230D акуст. система, 10“, 2-полос.

Driver-SPA12 Драйвер ВЧ компрессионный, Leem

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный ВЧ Leem Driver-SPA12

Динамик широкополосный 15″, катушка 3″. Номинальная мощность: 500 Вт. Импеданс: 8 Ом. Частотный диапазон: 45 Гц – 2.5 кГц. Чувствительность: 97 дБ. Материал катушки: медь/каптон. Материал магнита: феррит

Самовывоз, Почта РФ, Курьером, Логистическая компания

NordFolk NW1508 динамик широкополосный 15&quo.

Головка динамическая, 5 см, 8 Ом, мощность 5 Вт

Самовывоз, Почта РФ, Курьером, Логистическая компания

Visaton FRS 5/8 Головка динамическая, 5 см, 8.

Точность звукопередачи является основным параметром при выборе студийных мониторов для создания и сведения музыки. Новая линейка HS-серии продолжает философию кристально-чистого и нейтрального по окраске звучания, положенную в основу легендарных мониторов Yamaha NS-10M.

Самовывоз, Почта РФ, Курьером, Логистическая компания

Акустическая система YAMAHA HS8

Динамик ВЧ Visaton SC 5/8. Размеры динамика: 13 мм (0,5″); Внешние размеры: 51,5 x 51,5 мм; Полоса пропускания: 1500–22000 Гц; Резонансная частота: 2000 Гц; Мощность: 60 Вт; Чувствительность: 90 дБ; Сопротивление: 8 Ом

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный ВЧ Visaton SC 5/8

Visaton FR 58/8 – это широкополосная динамическая головка с пропитанным бумажным диффузором, резиновым подвесом, металлической корзиной квадратной формы, с 4 монтажными отверстиями и резиновой прокладкой

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный широкополосный Visat.

30 см (12 “) НЧ/СЧ динамическая головка для использования в профессиональном аудио

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный СЧ/НЧ Visaton PAW 30.

тип АС: полочная, активная, фазоинверторного типа, назначение: мониторный громкоговоритель, 150 Вт, 42-50000 Гц, Bi-amping, 201x337x280 мм

Самовывоз, Почта РФ, Курьером, Логистическая компания

Акустическая система Adam A7X

SC 4.7 ND/8 – магнитоэкранированная овальная широкополосная динамическая головка с высокой эффективностью и сбалансированной частотной характеристикой. Очень маленькие размеры благодаря неодимовому магниту

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик профессиональный широкополосный Visat.

Головка динамическая 8 Ом, 4 Вт

Самовывоз, Почта РФ, Курьером, Логистическая компания

Visaton SC 4.9 FL/8 Головка динамическая 8 Ом.

Размеры динамика: 20 мм (0,8 ); Внешний диаметр: 94 мм; Полоса пропускания: 1200-22000 Гц; Резонансная частота: 1900 Гц; Мощность: 70 Вт; Чувствительность: 90 дБ; Сопротивление: 8 Ом

Самовывоз, Почта РФ, Курьером, Логистическая компания

Динамик ВЧ Visaton DT 94/8 (1 шт.)

Головка динамическая ВЧ, 25 мм, 100 Вт (12 дБ/окт. 4000 Гц), >3000 Гц, 8 Ом, 90 дБ

Самовывоз, Почта РФ, Курьером, Логистическая компания

Visaton SC 10 N/8 Головка динамическая ВЧ, 25.

Настенный пассивный громкоговоритель чёрный с кронштейном в комплекте (цена за пару)/ 100В/Мощн.:60Вт RMS / Программная мощность:120Вт/ Динамики-HЧ: 5,1/4” /ВЧ:1 tweeter/Чувств.88дБ/ Диап. частот:50Гц-20kГц/ Размеры:240x150x160мм / Вес:2,2кг

Самовывоз, Почта РФ, Курьером, Логистическая компания

Omnitronic WA-5S PA настенный пассивный громк.

Головка динамическая ВЧ, 20 мм, 70 Вт (12 дБ/окт. 4000 Гц), >3000 Гц, 8 Ом, 90 дБ

Самовывоз, Почта РФ, Курьером, Логистическая компания

Visaton DT 94/8 Головка динамическая ВЧ, 20 м.

Головки динамические широкополосные – 596 товаров

Динамик профессиональный широкополосный Visaton SC 598

от 923 ₽ Подробнее

Visaton SC 138 Головка динамическая широкополосная 13 см 40 Вт 8 Ом 90 дБ

от 3 110 ₽ Подробнее

Головка динамическая широкополосная для SWS03CS05

от 1 514 ₽ Подробнее

Головка динамическая широкополосная для CH510 InterM Головка динамическая широкополосная для CH510

от 1 326 ₽ Подробнее

Головка звукоснимателя AudioTechnica ATVM95EH PNP

от 5 990 ₽ Подробнее

Головка динамическая широкополосная SC 138 Visaton

от 3 055 ₽ Подробнее

Головка динамическая Visaton AL 1308

от 14 318 ₽ Подробнее

Головка динамическая широкополосная для CH510

от 1 363 ₽ Подробнее

Головка динамическая широкополосная для SWS03CS05 InterM Головка динамическая широкополосная для SWS03CS05

от 1 473 ₽ Подробнее

Головка динамическая широкополосная 20 см 8 Ом BG 208 Visaton

от 3 761 ₽ Подробнее

ВЧдинамик Audison TH 15 II Violino

от 82 800 ₽ Подробнее

Читайте также:
Самодельный усилитель к наушникам

Головка динамическая Visaton B 2006

от 23 416 ₽ Подробнее

Динамик профессиональный широкополосный Visaton FR 134

от 1 590 ₽ Подробнее

Головка динамическая широкополосная для CS500700

от 1 506 ₽ Подробнее

Visaton K 64 WP50 широкополосная динамическая головка 64 см 25 2 Вт

от 670 ₽ Подробнее

Головка динамическая широкополосная для CS900 InterM Головка динамическая широкополосная для CS900

от 1 326 ₽ Подробнее

Колонки автомобильные Swat SPH5 220 Вт 88дБ 4Ом 13 см 5 дюйм широкополосные однополосные

от 1 550 ₽ Подробнее

Динамик профессиональный широкополосный Visaton BF 45 S4

от 1 990 ₽ Подробнее

Динамик профессиональный широкополосный Visaton SL 7134

от 1 502 ₽ Подробнее

Динамик профессиональный широкополосный Visaton BG 178

от 2 135 ₽ Подробнее

Головка динамическая широкополосная для CS900

от 1 356 ₽ Подробнее

Динамик профессиональный широкополосный Celestion Truvox TF 1525E T5368AWD

от 7 180 ₽ Подробнее

Головка динамическая широкополосная для CH522 InterM Головка динамическая широкополосная для CH522

от 1 473 ₽ Подробнее

Автомобильная акустика DL Audio Gryphon Lite 130

от 1 690 ₽ Подробнее

Колонки автомобильные Swat SPH69 280 Вт 90дБ 4Ом 15×23 см 6×9 дюйм широкополосные однополосные

от 2 200 ₽ Подробнее

Автомобильные широкополосные динамики EDGE EDB5WE0

от 1 004 ₽ Подробнее

Динамик профессиональный широкополосный Visaton BF 374

от 1 320 ₽ Подробнее

Динамик профессиональный широкополосный Visaton SL 7134

от 1 205 ₽ Подробнее

Динамик профессиональный широкополосный NORDFOLK NW1508

от 6 100 ₽ Подробнее

Динамик профессиональный широкополосный Visaton B 2006

от 24 663 ₽ Подробнее

Головка динамическая широкополосная для CH532 InterM Головка динамическая широкополосная для CH532

от 2 578 ₽ Подробнее

НЧСЧдинамики Audison Prima AP 690

от 9 660 ₽ Подробнее

Динамик профессиональный широкополосный Visaton SL 7134

от 1 732 ₽ Подробнее

Visaton FR 104 Головка динамическая 20 Вт 10 см 4 Ом

от 1 350 ₽ Подробнее

Широкополосный динамик VAG 6R0 035 453 C

от 1 807 ₽ Подробнее

Динамик НЧСЧ 15 Soundking FA1507H

от 11 290 ₽ Подробнее

T5327AWD TF1525 Динамик 15 8 Ом 250Вт Celestion

от 7 520 ₽ Подробнее

Celestion Truvox TF 1225 широкополосный динамик 250Вт

от 6 290 ₽ Подробнее

Динамик профессиональный широкополосный JBL D8R2431

от 16 397 ₽ Подробнее

НЧСЧдинамик Audison TH 65 II Sax

от 115 000 ₽ Подробнее

  • Головки распредвала
  • Вентильные головки
  • Головки 12-гранные
  • Головки Superlock
  • Головки квадратные
  • Оптические головки
  • Поршневые головки
  • Разливочные головки
  • Ударные головки
  • Головки автоматические
  • Головки электромеханические
  • Головки цветов
  • Головки делительные
  • Шарнирные головки
  • Головки звездочки

Мы не интернет магазин!

Gipper НЕ ПРОДАЕТ товары, а является информационной площадкой на которой публикуются цены на товары от разных интернет магазинов. Если Вы хотите купить какой либо товар или получить информацию о сроках и способах доставки — обратитесь напрямую в магазин.

Доработка головок динамических и измерение их частотных характеристик

Диапазон звуковых частот, который способно воспринимать ухо человека, довольно широк, от 20 до 20000 Гц. Как видно из рис. 1[1], наибольшей чувствительностью человеческий слух обладает на средних частотах — в диапазоне от 2000 до 5000 Гц. А область с 200 до 5000 Гц является самой информативной. При проектировании и изготовлении высококачественных акустических систем особое внимание следует уделять звену, отвечающему за воспроизведение звука в зоне средних частот.

Рис. 1. Частотные характеристики ощущений громкости: 1 – характеристика порога слышимости; 2 – уровни болевых ощущений; 3 – область речевых передач; область музыкальных передач.

Известно, что наиболее слабое звено акустических систем 35АС-012 (S-90) их модификаций и других им подобным – среднечастотная динамическая головка 20ГДС-3-8 (старое название 15А-11А) имеет резкий спад выше 4,5 кГц (рис. 2), а, что практически исключает возможность получения качественного звуковоспроизведения. Второй недостаток – акустическая добротность составляет порядка 11,8. А чем выше добротность колебательной системы, тем сильнее она подчеркивает частоты, совпадающие с резонансными, или близкие к ним. Что, практически, исключает возможность получения полноценного неискаженного звучания, если не принять необходимые меры. [2].

Рис. 2. Среднечастотная динамическая головка 20ГДС-1-8 (15ГД-11А): а – АЧХ звукового давления; б) – габариты и установочные размеры.

В некоторых выпусках систем 35АС-1, предшественнице S-90, в качестве СЧ звена использовалась головка 10ГД-34 (новое название 25ГДН-1), конструктивно очень схожа с головкой 20ГДС-1-8 (рис. 2,б). Особенно широко применялась во всех модификациях S-30, 6АС-2 и других в качестве НЧ – СЧ звеньев. Отличается она от 20ГДС-4-8 наличием резинового подвеса, вместо тканевого, что утяжеляет подвижную систему динамика и способствует снижению его частоты основного резонанса, а также более мягкую центрирующую шайбу для обеспечения большего хода диффузора, что существенно для НЧ излучателя.

Читайте также:
MP3-модуль и схема учёта реального времени

Рис. 3. Среднечастотная динамическая головка 25ГДН-1-8 (10ГД-34): а – общий вид; б – АЧХ звукового давления.

С целью улучшения качества звучания динамической головки 20ГДС-1 Киселев А., в своей статье «Модернизация динамической головки 20ГДС – 1» (РАДИО № 3, 1999 года, стр. 19), предложил отделить от диффузора пылезащитный колпачок и приклеить его к, выступающему из диффузора, краю звуковой катушки выпуклой стороной, т. е. перевернув его на 180º. Если разобраться, то автор статьи, по сути, оборудовал динамическую головку дополнительным диффузором, который работает на верхних частотах, тем самым расширил полосу частот, воспроизводимой головкой 20ГДС-1, до 7…8 кГц. Дополнительные диффузоры имеют многие широкополосные громкоговорители. Применение дополнительного конуса, который вставляется внутрь диффузора (рис. 5) повышает верхнюю границу частотного диапазона динамика до 10-12 кГц можно. В этом случае на высоких частотах основной диффузор перестает работать из-за относительно гибкого соединения его с звуковой катушкой, а в работу включается малый диффузор, достаточно жесткий и легкий [3].

Рис. 5. Громкоговоритель с дополнительным диффузором.

Имея в своем пользовании акустическую систему 35АС-012, решил поступить также. Но вместо пылезащитного колпачка применить дополнительный высокочастотный рупор от динамической головки 10ГДШ-1-4 (10ГД-36К). Внутренний диаметр звуковой катушки 10ГДШ-1-4 составляет 25,7 мм, а головки 20ГДС-3-8 – 25,6 мм. Почти идеальное совпадение. Работы проводились следующим образом.

Отмачивают пылезащитный колпачок жидкостью для снятия лака с ногтей, можно растворителями 646, 647 и другими. Аккуратно извлекают его скальпелем (рис. 6, б). Помните, что из-за сильного действия поля магнитной системы на инструмент из стали, неосторожными движениями, можно повредить элементы динамика! Далее вытирают ватным тампоном, смоченным в той же жидкости для снятия лака, диффузор от клея. Промазывают клеем «Момент» нижнюю часть рупора и верхнюю часть звуковой катушки. Просушивают 10-15 минут. Опять промазываем обе детали и сразу соединяем их, прижимая с определенной силой (рис. 6, г). Рупоры у меня были новые. Но можно вышеизложенным способом извлечь их из старых динамиков (рис. 6, в). Те же действия проводят и для 25ГДН-1.

Конструкция рупора разработана для динамической головки 10ГДШ-1. Для 20ГДС-3-8 и 25ГДН-1-4 его следует подогнать. Подгонка заключается в поэтапном срезании его края, измеряя, после каждого срезания, АЧХ динамика. Операцию повторяют до тех пор пока не получат наиболее ровную кривую АЧХ в приделах средних частот. Срезав, примерно, 10 мм края рупора проводят измерения. Второе и последующие подрезания следует проводить очень аккуратно, срезая не более 3 — 1 мм (в порядке уменьшения). В итоге, боковая поверхность рупора внутри составила около 7 мм (от пылезащитного элемента колпачка до края обрезки). Обрезку исполняют маникюрными ножницами (рис. 7,б), поскольку они оказались самым приемлемым инструментом для такого вида работы, имеют миниатюрные округленные режущие поверхности. Обрезанный край, для придания жесткости, пропитывается клеем БФ-2, немного разведенным этиловым спиртом.

Измерения АЧХ производят с помощью конденсаторного микрофона (желательно измерительного), размещенного на одной оси с головкой*, в пределах 30 — 40 см, компьютера и программы RightMark 6.2.3. Микрофон подключается к линейному входу звуковой карты компьютера, а динамик к усилителю компьютерных АС. Запускают программу RightMark 6.2.3 и проводят измерения АЧХ звукового давления [4]. Важно, что бы в усилителе регуляторы тембра были в среднем положении, а режим тонокомпенсации и корректирующие звенья отключены. Испытуемая головка размещается наиболее удаленно от стен, мебели и других предметов.

а
б
в
г
Рис. 6. Приклеивание рупорка на 15ГД-11А: а — головка динамическая 15ГД-11А в оригинальном исполнении; б — головка динамическая 15ГД-11А с извлеченным пылезащитным колпачком; в — головка динамическая широкополосная 10ГДШ-1-4 (10ГД-36К), высокочастотные рупорки; г — головка динамическая 15ГД-11А с рупорком.
а
б
в
Рис. 7. Формирования рупора головки динамической 25ГДН-1-4: а – процесс срезания; б – измерение высоты стенки; в – вид на этапе завершения.

Такая доработка не только позволила расширить полосу частот, воспроизводимых головками 20ГДС-4-8 и 25ГДН-1-4, до 10 кГц (рис. 8), но и избавится от структурных призвуков в результате деформаций пылезащитного колпачка.

а
б
Рис. 8. Амплитулно-частотные характеристики доработанных головок: а – 20ГДС-4-8; б – 25ГДН-1.

Для снижения добротности применяют акустическое демпфирование головки с помощью ПАС. Демпфирование головок звукопоглощающим материалом менее результативно и, к тому же, способствует повышению резонансной частоты. С целью повышения эффективности действия ПАС на подвижную систему, работающей в акустическом оформлении головки, демпфирующею ткань следует располагать как можно ближе к диффузору. Наиболее рационально устроить ПАС в отверстиях диффузородержателя. Для этого, из плотного картона толщиной, примерно, 2 мм вырезают восемь одинаковых элементов (рис. 9, а). Общая площадь отверстий для головки 15ГД-11А должна составлять 22…28 см 2 . Одну сторону каждого элемента смазывают клеем момент. Через 5 минут наклеивают на натянутую, с помощью пяльцев для вышивания, хлопчатобумажную ткань. Через 30 минут ткань обрезают вокруг элементов. Элементы ПАС слегка изгибают и вклеивают в окна дифузородержателя (рис. 9. б). Места склейки дополнительно промазывают клеем [5]. Важно, что бы ткань в отверстиях элементов была натянута, в противном случае эффекта от применения ПАС не будет! Применение ПАС, т.е. акустического демпфера, позволяет затормозить собственные колебания диффузора, в результате существенно снизится время «послезвучания» и заметно повысится качество звучания динамика.

Читайте также:
Усилитель на микросхеме серии LM

Рис. 9. Головка 15ГД-11А: а — элемент ПАС; б — ПАС в окнах диффузородержателя.

Демпфирующее действие ПАС для головки динамической 15 ГД-11А графически представлено на рисунке 10.

Рис. 10. Демпфирующее действие ПАС для головки 15ГД-11А.

Эффективность применения ПАС было проверено сотрудниками Бердского радиозавода. В частности, были измерены коэффициенты гармоник среднечастотной головки 15ГД-11А с ПАС и без ПАС. Результаты измерений, приведенные в таблице 1, показывают, что ПАС позволяет значительно снизить коэффициент гармоник в частотном диапазоне, в котором человеческое ухо обладает наибольшей чувствительностью.

Таблица 1. Коэффициенты гармоник головки 15ГД-11А.

Частота, Гц Коэффициент гармоник, %
250 1,5 0,6
400 2 1,1
630 1,5 1,1
1000 1,1 1,0
2000 1,5 1,2
4000 0,6 0,5

По изложенному методу ПАС рекомендуется применять для любых головок, работающих в СЧ диапазоне. А для НЧ динамиков – в задней стенке ящика, для закрытого оформления, и в окнах фазоинвертора, для фазоинверторного [7]. Особых расчетов для изготовления ПАС не существует. Производители современной акустики плотность материалов, сечение окон и т. п. подбирают экспериментальным путем.

В заключение, подвесы головок, для восстановления эластичности, пропитывают аэрозолем «Кондиционер и натяжитель приводных ремней».

После такой доработки существенно увеличился частотный диапазона до 10 кГц (!), улучшились линейность АЧХ звукового давления и, самое главное, качество звучания акустической системы в целом.

При измерениях АЧХ громкоговорителей к микрофону предъявляются особые требования. Он должен иметь широкий частотный диапазон, не уже 30 – 18000 Гц, «гладкую» АЧХ, небольшие размеры мембраны.

Самые высокие электроакустические параметры имеют конденсаторные микрофоны, и в этом их основное преимущество по сравнению с другими разновидностями микрофонов. Частотная характеристика конденсаторного микрофона отличается своей равномерностью. В диапазоне до резонанса мембраны неравномерность может быть очень малой, выше резонанса она несколько увеличивается. Вследствие малой неравномерности характеристики конденсаторные микрофоны используют как измерительные. Измерительные микрофоны изготовляют на диапазон частот от 20 – 30 Гц до 30 – 40 кГц с неравномерностью 1 дБ до частоты 10 кГц и не более 6 дБ свыше 10 кГц. Размеры капсюля такого микрофона берут в приделах 6 – 15 мм, из-за этого он практически не направлен до частоты 20 – 40 кГц. Чувствительность его не превышает – 60 дБ.

Микрофонный капсюль Panasonic WM61 [8] идеально подходит для использования его, в качестве измерительного.

Подключать капсюль напрямую через микрофонный вход ПК, используя, для его работы фантомное питание, не советуется, из-за большой вероятности наводок и шумов, пониженной чувствительности, что негативно скажется на качестве измерений. Микрофон должен подключаться к аудиовходу материнской платы через согласующее звено – микрофонный предварительный усилитель.

Изготовить своими руками такое устройство (рис. 11) совсем не сложно. Оно состоит из, помещенного в трубку, длиной 20 см, микрофонного капсюля диаметром 6 мм, микрофонного усилителя на ОУ ОРА2134, отличающимся высокими характеристиками, химического источника питания, напряжением 9 вольт, типа «Крона».

а
б
в
г
Рис. 11. Микрофон измерительный: а – вид со стороны светодиода; б – вид со стороны капсюля; в – вид со стороны линейного выхода; г – общий вид.

Схема электрическая принципиальная измерительного микрофона взята из источника [9]. После некоторых изменений имеет вид, представленный на рис. 12. Конденсатор С3 заменен пленочным (К-73, К-78 или другой, рекомендованный для установки в сигнальные цепи звуковых устройств). Налаживание усилителя сводится к подборке светодиода, который обеспечивал бы спад напряжения до 2 вольт на участках указанных в схеме на схеме.

Читайте также:
Как сделать блютуз колонку своими руками?
Рис. 12. Схема электрическая принципиальная.

Печатная плата изготавливается из фольгированного стеклотекстолита размерами 55 х 20 мм — рис. 13. Проектирование и печать выполняется на ПК с использование программы Sprint Layout 6.0.

а
б
Рис. 13. Печатная плата: а – вид со стороны дорожек; б — размещения деталей.

Все это монтируется в металлический корпус — для экранирования схемы — рис. 14.

Рис. 14. Расположение элементов в корпусе

Подключают измерительный микрофон к линейному входу звуковой карты ПК через экранированный кабель с двумя жилами. Экран провода подключается с одной стороны – стороны звуковой карты, это также положительно сказывается на точности измерений – рис. 15.

Рис. 15. Схема соединительного шнура.

Данная конструкция имеет широкий диапазон рабочих частот, относительно высокую чувствительность, ровную АЧХ, «слышит» звуки на большем расстоянии, по сравнению, например, с микрофоном МКЭ-3. Замеры можно производить почти с любой, слышимой ухом человека, дистанции, а это важно при тестировании не только одной головки, а всей акустической системы (систем), например в помещении или салоне автомобиля. Микрофон успешно испробован с программой Right Mark 6.2.3. Представленные на рисунках 3 и 8 графики АЧХ звукового давления динамиков построенные с помощью этой программы.

Примечание. С целью устранения негативного влияния акустического короткого замыкания на итоги измерений, головки 20ГДС-1-8 и 25ГДН-1-4 следует помещать в бокс с открытой задней стенкой, снаружи и изнутри покрытого звукопоглощающим материалом. Динамик монтируют на переднюю панель снаружи. В противном случае воздух, резонирующий в отверстии под головку, будет вносить искажения. На графике АЧХ это проявляется в виде пиков и провалов.

Печатная плата микрофона измерительного в формате .lay:

Литература

  1. Козюренко Ю. Высококачественное звуковоспроизведение. \ М. : Радио и связь, 1993.
  2. Марченко В. Доработка динамической головки 15ГД-11А. – Радио, №7, 2013.
  1. Сапожков М. Акустика. Учебник для вузов. \ М., «Связь», 1978.
  1. Марченко В. Доработка динамических головок и измерение их частотных характеристик. \ Радио, №2, 2014.
  2. Марченко В. Доработка динамических головок и измерение их частотных характеристик. \ Радио, №2, 2014.
  3. Марченко В. Модернизация АС 35АС-012 (S-90). \ Радио, №8, 2014.
  4. Молодая Н. Акустическое демпфирование громкоговорителей. \ Радио, №4, 1969.
  5. https://dl.dropboxusercontent.com/u/87298597/blog/em06_wm61_a_b_dne.pdf
  6. http://audiogarret.com.ua/viewtopic.php?f=15&t=7866#p135608]

Автор: Владимир Марченко, г. Умань, Украина

Предварительный усилитель для контрабаса и бас гитары JFet Alembic F2B

Приветствую всех любителей, Её Величества Электроники!

Предусилители для электрогитар – очень популярная вещь, ибо можно при его помощи получить весьма хороший звук инструмента при включении в линейный вход микшера, или мультикора на концерте, либо при включении в комбик, или усилитель для домашних занятий и репетиций. И при этом схемотехника подобных устройств довольно несложна.

В этой статье речь вновь пойдет о преампе Alembic F2B, который весьма хорошо зарекомендовал себя среди музыкантов. В данном случае о версии на полевых транзисторах. Подобный преамп я собрал для моего друга – контрабасиста.

О схеме для контрабаса, возможных подводных камнях и настройке схемы ниже пойдет речь.

Статья, в основном, ориентирована на музыкантов, умеющих держать в руках паяльник и имеющих определенную практику и опыт в электронике. И хоть в интернете очень много информации об Аlembic F2B, либо в ламповом, либо в Jfet исполнении, но, зачастую, ответ на самый важный вопрос настолько сложно бывает отсеять в обилии ценной информации, советов, предположений, бредовых идей, перепалок на форумах, что часто просто жалко свое время. А результата нет.

Итак, прежде всего, чем выше сопротивление музыкального инструмента, подключаемого ко входу схемы, тем больший уровень возможных наводок, помех и собственного уровня шума схемы мы будем иметь на выходе. И, если сопротивление бас гитары с полностью включенными звукоснимателями равняется нескольким килоомам, то сопротивление пьезо датчика контрабаса – это уже около десятка Мегаом. А это может стать проблемой.

Лучший вариант – это вообще крепить предусилитель на контрабасе возле пьезо звукоснимателя, но это не всегда возможно.

Поэтому, не брезгуем керамикой на входе схемы, между затворами транзисторов и землей, между затворами и стоками Jfet –ов. Подобное включение оставляем и для бас гитары. Лишним не будет. Номиналы керамических конденсаторов не очень критичны. От 10 до 56 пФ можно ставить смело. Если схема шипит очень сильно – не лишним будет конденсатор С12 на выходе. Здесь надо подбирать ушками. На мой вкус 4700 пФ пришелся ко двору. Емкость выше зажимает звук, ниже – не достаточно шунтирует высокочастотные шумы. Оговорюсь, что я экспериментировал только с транзисторами J201 (SOT-23). Других в Симферополе не достал.

Читайте также:
Как сделать усилитель звука для автомагнитолы?

Переключатель Bright не ставил. С7 впаян постоянно.

Настройка:

Сначала резистором R6 выставляем половину напряжения питания на стоке второго транзистора. Возможна небольшая погрешность. Далее подключаем выход преампа к линейному (или микрофонному) входу звуковой карты и надеваем наушники (если нет генератора синуса и осциллографа). Gain на полную. Советую музыкантам все же больше опираться на свои уши, чем на приборы. Подключаем бас ко входу и регулировкой истокового резистора R4 добиваемся отсутствия искажений сигнала даже на форте на струне ми. Если каскад имеет слишком большое усиление и искажений все равно не избежать, следует уменьшить емкость конденсатора С2. В оригинальной схеме – 47 мкФ. У себя я на одной из схем уменьшил до 10 мкФ. Далее R3 выставляем общее усиление схемы. Подаем на вход сигнал генератора 100 Гц (синус)амплитудой 500 мВ. Открываем, к примеру, Sound Forge и резистором R6 выставляем выходной уровень сигнала порядка “-5 дБ”. Это примерно соответствует линейному выходу. Может быть регулировку R3-R4 нужно будет повторить еще раз. Если в схеме не стоят подстроечные резисторы – меряем сопротивление временных и меняем на постоянные.

С6 рекомендуют ставить для детальности ВЧ. Я разницы не ощутил. Решать вам.

Блок питания устанавливал прямо в корпус к преампу. Делал на макетной плате. Маленький трансформатор, диодный мост, два П образных фильтра (1000 мкФ – 150 Ом – 1000 мкФ – 100 Ом – 100 мкФ). 100 Ом и 100 мкФ стоят уже на плате преампа. В архиве немного другая плата. Там БП нарисован почти весь. Параллельно первичной обмотке трансформатора желательно поставить конденсатор 0,47 мкФ 400 В.

Входной и выходной резисторы, с параллельно включенными конденсаторами, желательно устанавливать прямо на джековых гнездах. Заземление корпуса преампа только в одной точке, во избежание земляной петли. Либо вести от последнего конденсатора блока питания (если гнезда пластсмассовые), либо от корпуса самого гнезда (если гнездо металлическое). Переменные резисторы ставить хорошего качества, во избежание различных хрустов и шорохов. (Бёрнс, Альпс, Альфа..) Конденсаторы С2, С10, С4, С5, С9 тоже желательно купить хорошие. С4, С5, С9 – пленочные.

Звучит предусилитель очень достойно, несмотря на простоту. Добавляет упругость и тембр басу. На ослиллограмме при настройке были хорошо видны характерные ограничения верхней полуволны, свойственные лампе. (И эмуллятору лампы – полевому транзистору). На спектрограмме – добавляемые транзисторами обертоны.

(Уровень шума на спектрограмме – это звуковая карта нетбука. Писал с одного компьютера на второй через преамп. К одному подключена профессиональная звуковая карта, а сигнал генератора шел с нетбука со встроенной карты. Отсюда шум)

Плату, схему, фото прилагаю в архиве. Печатная плата в архиве другая, ибо вначале разводил плату для лампового Алембика, но немного ошибся в высоте лампы с панелькой (на 3 мм не вошла в корпус по высоте). Да и развел, если честно, не очень правильно. Потом переделаю. А т.к. схема лампового и транзисторного усилителя одинаковая, то решил использовать старую печатку. Только впаял транзисторы. Транзисторы в SOT 23, но впаять корпуса TO 92 не составит большого труда. Еще раз говорю, что в Симферополе с комплектацией для профессиональной аппаратуры туговато.

Сэмплы пока друг не записал, но собранным предусилителем очень доволен. Я перед отправкой преампа тоже тестировал его дома, только на бас гитаре. С ним и без него – разница очень существенная.

Корпус красил аэрозолем. Лицевая панель набрана во Фронтдизайнере, распечатана на фотобумаге, приклеена и покрыта лаком. Просверлены два отверстия и нарезана резьба под винты М4 для крепления лицевой панели.

На этом все. Всем удачи в творчестве.

Ниже выкладываю несколько фотографий моего предусилителя для контрабаса (бас гитары)

Всем работающих схем. С уважением, Эдуард Волков.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: