Двухканальный регулятор охлаждения

Двухканальный регулятор охлаждения

В данной ветке хотелось бы собрать массив схем с описанием работы управления кулерами охлаждающих радиаторы выходных каскадов УНЧ.
Как вариант первой конструкции можно рассмотреть схему термостата работающего как на охлаждение, так и на нагрев в зависимости от того какую нагрузку использовать в исполнительном устройстве и саму схему включения этой нагрузки.
параметры:

– Измерение температуры от -55°С до +125°С (шаг 0,1°С)
-Установка температуры от -55°С до +124°С (шаг 0,1°С . ).
-Гистерезис от 0,1°С до 25°С


Индикатор можно применять как с общим анодом, так и с общим катодом – просто
разные прошивки.

“*” обозначены компоненты необходимые для защиты от статического
электричества, но их можно не устанавливать.
Управление:

Кнопками “+” и “-” устанавливают температуру включения нагрузки (на экране в
первом сегменте отобразится символ подчёркивания “_”).
При одновременном нажатии обеих кнопок устройство переходит в режим изменения
гистерезиса (на экране в первом сегменте отобразится символ “d”).
Длительное удержание одной из кнопок приводит к ускоренному перебору значений.
При отсутствии нажатий на кнопки в течении 5 секунд прибор переходит в режим
отображения измеренной температуры, при этом происходит запоминание изменённых
параметров в энергонезависимую память.

В первом сегменте отображается точка, если Т

Третий вариант управления:

В качестве термодатчика используется терморезистор с отрицательным ТКС (термистор) R1, который совместно с резистором R2 образует делитель напряжения. Напряжение с делителя – пропорциональное температуре – подается на триггер Шмитта на транзисторах VT1,VT2. При повышении входного напряжения триггер включается, при этом полевой транзистор VT3 (закрытый в исходном состоянии) открывается и подает напряжение на двигатель вентилятора М1. Поскольку последовательно с двигателем включен мощный стабилитрон VD1, напряжение на вентиляторе меньше напряжения питания на величину напряжения стабилизации стабилитрона. Вентилятор работает на малых оборотах. При дальнейшем росте температуры, напряжение делителя также растет, и при некотором его значении открывается транзистор VT4. Этот транзистор шунтирует цепочку VT3-VD1, и напряжение на вентиляторе повышается. Поскольку в качестве VT4 используется «вертикальный» транзистор, то диапазон входных напряжений, при котором VT4 переходит из закрытого состояния в открытое, небольшой и увеличение скорости вращения вентилятора до максимума происходит при небольшом изменении температуры.
Конденсатор С1 форсирует запуск двигателя вентилятора при включении его на пониженном напряжении. Это позволяет надежно запускать вентилятор даже при его износе и запылении, когда момент трения на валу повышен, что повышает надежность системы охлаждения. Конденсатор С2 снижает пульсации напряжения на вентиляторе при регулировании напряжения. Если устройство питается от отдельного самостоятельного источника, то С2 можно исключить.

Подстроечными резисторами R3 и R9 устанавливают пороги срабатывания ступеней охлаждения. Светодиод HL1 – индикатор, причем его яркость сигнализирует о напряжении на вентиляторе, а, следовательно, и о температуре. При желании получить больше информации, узел индикации можно усложнить, применив, например, два светодиода с разным цветом свечения.

Если необходимо контролировать температуру нескольких радиаторов, то можно использовать несколько однотипных термисторов, включенных параллельно (пропорционально уменьшив сопротивление R2). При этом, вследствие нелинейности температурной характеристики, система будет в большей степени реагировать на наиболее горячий объект, что повысит надежность устройства в целом.

Схему можно питать и от источника с меньшим напряжением, но при этом снизится максимальная эффективность охлаждения.
Конструкция и детали.

Биполярные транзисторы – любые маломощные с коэффициентом h21Э не менее 150, например, КТ3102 (я использовал импортные ВС546В). Полевые транзисторы – любые средней мощности. Из отечественных подойдут КП740-КП743. Можно использовать и маломощные КП505А-В, однако ток вентилятора в этом случае не должен превышать 150 мА. Из импортных подойдут практически все транзисторы серий IRF5хх, IRF 6хх. Стабилитрон VD1 должен выдерживать ток вентилятора, который при пониженном напряжении питания составляет 40…50% от номинального (а это порядка 50. 150 мА). Напряжение стабилизации выбирается таким образом, чтобы напряжение на двигателе составляло 5…6 вольт (т.е. 6. 10 вольт). При более низком напряжении не все вентиляторы устойчиво работают, более высокое напряжение увеличит уровень шума. Если не удастся подобрать подходящий стабилитрон, можно воспользоваться его аналогом

Большое разнообразие термисторов не позволяет указать какой-то конкретный тип. Подойдут практически все в интервале сопротивлений 1…68 кОм. Если сопротивление термистора превышает 20 кОм, то при подборе R2 следует учесть его шунтирование резисторами R3 и R9.

Поскольку основным для усилителя все же является пассивное охлаждение, то следует использовать «конвекционные» (обыкновенные) радиаторы с редкими толстыми ребрами. Вентилятор – корпусной вентилятор подходящего размера от компьютера. Процессорные вентиляторы использовать не рекомендуется, несмотря на их больший воздушный поток – они более шумные. Термистор необходимо установить так, чтобы обеспечивался хороший тепловой контакт с радиатором (с использованием термопасты), и на него не попадал воздушный поток от вентилятора.

Поскольку температура внутри корпуса усилителя может достигать 40…50 градусов, возможна установка дополнительного вентилятора, выдувающего воздух из корпуса. Все вентиляторы включаются параллельно.
Налаживание устройства необходимо, вследствие большого разнообразия термисторов. Оно сводится к подбору резистора R2 и установки порогов срабатывания резисторами R3, R9. Для этого задаются значениями температур включения ступеней устройства (на рис.1 это 40 и 50 градусов) и определяют сопротивление термистора на этих двух температурах. Проще всего определить сопротивление, поместив термистор в стакан с водой требуемой температуры. Допустим, получились значения R1_1 и R1_2. Резистор R2 должен иметь такое сопротивление, чтобы напряжение делителя при включении первой ступени было порядка 2,5 вольт:

После установки R2 соответствующего номинала, вместо термистора подключают переменный резистор с установленным сопротивлением, равным R1_1 и при помощи R3 добиваются включения вентилятора (настраивается именно момент включения, для отключения вентилятора, вследствие гистерезиса, необходимо отключать «термистор»). Аналогично, при помощи R9 добиваются увеличения напряжения на вентиляторе при подключении вместо термистора сопротивления величиной равной R1_2.

Читайте также:
Инфракрасный барьер своими руками

Пятый вариант управления:

Такое устройство имеет существенный недостаток – при паузах в музыкальных программах вентилятор ещё несколько секунд продолжает работать, производя значительный акустический шум, что действует раздражающе.

Предлагаемое устройство при более простой схеме лишено этого недостатка. В паузах и при малом уровне громкости вентилятор работает на пониженных оборотах, практически не производя шума. При возрастании громкости вентилятор включается на полную мощность, но его шум теперь маскируется акустическим сигналом.
Схема устройства работает следующим образом. При подаче напряжения питания зарядным током конденсатора С2 запускается двигатель М1. Резистор R4, включённый последовательно с двигателем, снижает напряжение, подаваемое на двигатель, и его обороты. Сопротивление резистора зависит от мощности двигателя и подбирается экспериментально по отсутствию акустического шума при работе. При достаточно высоком напряжении, подаваемом на двигатель, конденсатор С2 может не понадобиться.

Выходное напряжение с УМЗЧ подаётся на вход устройства через делитель R1R2. Подстроечным резистором R2 регулируют порог срабатывания устройства. Выпрямленное диодом VD1 напряжение звуковых сигналов при увеличении их уровня заряжает конденсатор С1. Через резистор R3 он разряжается при уменьшении уровня входного сигнала. Стабилитрон VD2 ограничивает напряжение, подаваемое на затвор, на безопасном для транзистора VT1 уровне.

При достижении порогового уровня напряжения на конденсаторе С1 транзистор открывается, увеличивая ток через двигатель до номинального. При снижении уровня выходного сигнала УМЗЧ конденсатор С1 быстро разряжается через резистор R3, транзистор закрывается и двигатель М1 переходит на работу при пониженных оборотах. Диод VD3 защищает транзистор от реакции нагрузки (обмотки двигателя). Если двигатель бесколлекторный, этот диод можно исключить.

К деталям особых требований не предъявляется, резисторы и конденсаторы могут быть любых типов. Диоды VD1 и VD3 – любые маломощные кремниевые, например, КД509А, КД510А, Д220. Стабилитрон VD2 – на напряжение стабилизации 7. 10 В, например, Д814А, КС175А. При токе, потребляемом двигателем свыше 0,5 А, необходимо применить более мощный транзистор, например, IRFZ44N или отечественный КП812А1.

Налаживание устройства заключается в подборе резистора R4 для обеспечения работы вентилятора с допустимым уровнем шума и конденсатора С2 для надёжного запуска электродвигателя. При увеличении ёмкости конденсатора следует иметь в виду, что разряжается он через малое сопротивление сток-исток транзистора VT1, и для исключения повреждения транзистора последовательно с конденсатором большей ёмкости целесообразно включить резистор сопротивлением несколько ом.

Шестой вариант управления аналогичен по сути пятому:

Микросхема DA1 содержит два независимых компаратора. На первом из них собран узел, определяющий, что выходная мощность усилителя превышает некоторый пороговый уровень, а на втором – узел задержки выключения вентилятора.

Сигнал с выхода усилителя мощности подается на инвертирующий вход компаратора DA1.1 через резистор R1. Стабилитрон VD2 защищает вход компаратора от отрицательного напряжения, поступающего от усилителя мощности при усилении отрицательных полупериодов сигнала. На элементах R2 и VD1 собран параметрический стабилизатор, который задает порог срабатывания компаратора. Резистор R3 служит нагрузкой выходного каскада DA1.1, выполненного по схеме с открытым коллектором. Конденсатор С1 и резистор R4 задают время задержки выключения вентилятора. Диод VD3 необходим для предотвращения разрядки конденсатора С1 через резистор R3. Задержка позволяет сохранить напряжение на вентиляторе еще некоторое время для удаления выделившейся на теплоотводе энергии. Подстроечным резистором R5 можно регулировать время задержки выключения. Сигнал с выхода компаратора DA1.2 управляет транзистором VT1, включающим вентилятор охлаждения.

вот пару схем, с микросхемой и на транзисторах:

ВерШИМ Контроллер вентилятора охлаждения двигателя.

Всем привет!
Система охлаждения на ВАЗах, а именно вентилятор радиатора и его управление- не блещут какой-то продвинутостью. В частности датчик включения вентилятора ТМ108, у которых не хилый разброс по параметрам и надежность стремится к нулю. Плюс конечно нету режимов работы: Либо вкл, либо выкл. При этом шум от него издается недурный. Ну и обороты двигателя проседают. Особенно на Оке)

И вот решил я обойти этот недостаток и зарукожопить плавный автоматический контроль этим вентилятором (110Вт).
Схем в интернете я нормальных не нашел. Те схемы что собраны на 555 таймере сразу откидывал. На 494х тоже не нашел по своим запросам. Решил создать свое устройство, с функционалом по моим запросам. Для меня это проще чем искать сомнительные схемы.
Навыками микроконтроллеров не обладаю (конкретно язык программирования)

Мои запросы:
Девайс на базе полюбившейся всем TL494, а значит коммутация ШИМ (Широтно-импульсная модуляция). (Что за зверь такой?)

Конечно плавный разгон вентилятора от заданной температуры в заданном диапазоне.

Включение вентилятора не с нуля, а скажем от 30-40% мощности, т.к. на сверхнизких оборотах нам особо не за чем крутиться. Неэффективно.

Гибкая регулировка параметров для универсальности контроллера.
Собственный датчик температуры в радиаторе, в корпусе ТМ108, но не ТМ108 (вкручен в радиатор).

Итак.
Вот схема. Сначала собирал на макетке, изучал, что-то менял, добавлял.

Далее будет описание работы. (многабукф). А ниже будет видео.

В качестве датчика я использовал терморезистор с отрицательным температурным коэффициентом. Это значит что с повышением температуры — сопротивление падает. Выбор пал на NTC TTC 103. 10кОм при 25С. (Что было в запасе)
По графику этого терморезистора сопротивление на нем при 83 градусах было 1060 ом, а при 89 градусах- 860ом. Слишком малая разница сопротивления (а в итоге напряжения) что бы уместить туда ШИМ во всем диапазоне. А нам нужно разность напряжений от 0 до 3 вольт.
Для этого я использовал операционный усилитель на U1. Он представляет из себя дифференциальный усилитель.
На резисторах R5, RV1 и R4 собран делитель напряжения для инвертирующего входа 2.
Вращая подстроечник RV1 можно регулировать сдвиг диапазона работы вентилятора. Например 83-89 градусов, или 86-92.
На R1 и самом датчике собран делитель подключенный на неинвертирующий вход 3.
R2 задает коэффициент усиления. Подбирается в зависимости от терморезистора.
Усиленный размах сигнала выходит с выхода 1 и идет на вход управления скважностью ШИМ 4 у 494й.
494я имеет на борту свое стабилизированное опорное напряжение на 5 вольт. 14я нога.
Что бы вентилятор включался не с нуля мощности, я задействовал один их 2х встроенных в 494ю Усилитель ошибки (1 и 2 ноги ). Работает в режиме компаратора. Позволяет нам включать вентилятор с заданной мощности, а не с нуля на сверхнизких оборотах.

Читайте также:
Однополюсный драйвер шагового двигателя на 3,5 А

На резисторах R7 и RV2 собран делитель напряжения, который подключен к 14й ноге опорного напряжения. С делителя выходит напряжение на 2ю ногу, которое у меня составляет 1.7 вольта, и его можно регулировать вращая RV2. Это регулировка начальной мощности вентилятора после включения.

1 нога подключена к 4й, и таким образом получившийся компаратор сравнивает напряжение относительно заданного на 2й ноге (1.7в) и напряжение с выхода U1. И пока на 1й ноге напряжение выше 1.7 вольта — ШИМ не включается. После того как напряжение упадет ниже 1.7- появляется ШИМ и вентилятор включится на

30-40% от всей мощности. Если сдвинуть это напряжение на 3 вольта, то включаться будет совсем с 0. Но это не нужно.

Далее с выхода 494й (9я нога) ШИМ поступает через резистор R6 на базы транзисторов Q2 Q4 (чет с нумерацией намудрил я) включенных по схеме эмиттерного повторителя и представляют из себя простейший драйвер затвора полевого N-channel транзистора Q1.
Q2 заряжает, а Q4 разряжает. В данном случае можно было обойтись только Q4.
Это нужно для быстрого заряда и разряда затвора Q1. Задача такова, что бы полевик находился в полуоткрытом состоянии как можно меньшее время. Из за большого времени открытия закрытия полевика он греется. С ростом частоты — сложнее создать такой режим, но вполне можно. В данной схеме на всем диапазоне оборотов- полевик не греется даже без радиатора.
Вот что у него на затворе при нагрузке. Частота ШИМ 38кГц. Это значит что не писков, не гула не слышно:

Ну полевик уже коммутирует внтилятор относительно массы.
Если поставить P-channel, то можно коммутировать по +, как это сделано в штате. Но там есть нюансы с сопротивлением прехода (у P-ch оно выше при той же цене, а значит мощность ниже), наличием в магазинах и их ценой.

D1 представляет из себя демпферный диод. Это мощный сдвоенный диод Шоттки из компового БП объединенный в один. Гасит выбросы от двигателя из за его индуктивности, которые нехило разогревают и сваривают полевик. К нему особое внимание, т.к. выбросы довольно мощные и совсем слегка его разогревают.

Питание у меня замудрено. Вместо стабилизатора для питания электронной части я выбрал DC-DC step-up преобразователь, на вход которого можно подать от 9 до 36 вольт, а на выходе будет всегда стабильные 15 вольт. Почему 15? Потому что при управлении затвором полевика 15ю вольтами он полностью открывается, что позволяет снизить его нагрев. У меня просто много таких ДиСишек, поэтому я и поставил.
При том управляв 12ю вольтами нагрев был сильнее.
В принципе лечится установкой пры-тройки полевиков в параллель, развязав резисторами затворы. Или полевиком с меньшим напряжением на затворе.

Вот первоначальное творение на макетке. Тут мало что понятно и импульсная схема с такими длинными проводами давала мусора, но тем не менее работала отлично.

Что касаемо датчика.
Его как и говорил вмонтирую в корпус от ТМ108. Выпотрошил его, но пока еще не собрал.
На дно помещу терморезистор через термопасту. Далее закрою и прижму круглой пробочкой из текстолита или меди. Выведу 2 контактный герметичный разъем- фишку и залью ее эпоксидкой или герметиком. Пока выбираю чем заливать (эпоксидка хрупкая.)

После отладки и настройки, подбора номиналов и пр, идет 2я стадия, не менее интересная- разводка печатки. Вся процессия происходит в Proteus.

Далее на печать для ЛУТа. Печатал на бумаге из китая (желтая термотрансферная). Бумага супер. После утюга и остывания можно просто не вымачивая отлеплять от платы. Тонер к бумаге плохо липнет (вощеная).

Полученную плату я не стал лудить. Только силовую часть, наращивал припоем для сечения. Нужно по идее подкладывать медную проволоку на дорожку и заливать припоем. Так правильнее. Ну далее рассверловка, графика на другую сторону, монтаж, проверка как оно там живет и конечно же регулировка.

ПИД-регулятор своими руками

I. Постановка задачи

II. Теоретическая вводная

Как получается ПИД-регулятор? Берём разницу между текущей температурой и нужной, умножаем на настраиваемый коэффициент, получаем мощность, которую надо выдать в данный момент. Это пропорциональная составляющая, она работает в момент появления рассогласования — то есть моментально откликается как на изменение уставки, так и на поведение объекта. Начал подогреваться? Мощность начинает спадать. Перегрелся? Выключилось, или даже дали сигнал охлаждения. Всё хорошо, вот только в реальной жизни эффект от воздействия проявляется с запаздыванием, а на объект воздействуем не только мы, но еще и окружающая среда: разогретый реактор не только внутри горячий, но еще и остывает, отдавая тепло комнате, а потому как только выключаем мощность, он сразу начинает остывать. Поэтому чистый пропорциональный регулятор колеблется вокруг точки поддержания, и тем сильнее колеблется, чем выше воздействие окружающей среды / содержимого реактора.

Читайте также:
Схема блока управления электромагнитным клапаном

Чтобы компенсировать «внешние» воздействия на реактор, в цепь добавляют интегральную составляющую. Всё рассогласование, которое было в системе, идёт на интегратор (соответственно, как только мы перегрели — сумма уменьшается, пока недогрето — сумма увеличивается). И накопленный интеграл, со своим коэффициентом, даёт свою прибавку-убавку к мощности. В результате такого подхода, при стационарном процессе, через некоторое время интеграл подбирает такой вклад в сумму с мощностью, который компенсирует потери окружающей среды, и колебания исчезают — интеграл становится стабильным, поэтому величина выдаваемой мощности становится постоянной. Причем так как при этом держится нужная температура, рассогласование отсутствует, пропорциональная составляющая не работает вообще.

Для компенсации влияния задержек между воздействием и реакцией системы, в систему добавляют дифференциальную составляющую. Просто пропорциональный регулятор даёт мощность всё время, пока температура не достигнет нужной точки, пропорционально-дифференциальный начинает снижать подаваемую мощность раньше, чем догрелся до нужной точки — так как рассогласование уменьшается, имеется наличие отрицательной производной, уменьшающей воздействие. Это позволяет минимизировать перегрев при больших переходах.

Итак, с физическим смыслом разобрались, перейдём к основым вопросам реализации.

III. Кому пользоваться регулятором?

Что из этого следует? Из этого следует, что техники понимают физическую составляющую, и имеют опыт настройки аппаратных пид регуляторов. А значит, программная реализация должна исходить из удобства настройки техниками — повторяя физическую модель. И это крайне важно! Очень часто в угоду упрощения кода коэффициенты меняют, например, на обратные — чтобы избавиться от деления. В результате, настройка превращается в ад и кошмар, и требуется опыт настройки данного конкретного регулятора, вместо понимания процесса. Отсюда получаем, что наши коэффициенты — постоянная интегрирования и постоянная дифференцирования — должны иметь размерность времени, то есть задаваться в секундах, а никак не в «1/с», как это любят делать.

IV. Область функционирования.

1200°C, управляется только подача мощности.

Точность управления определяется во-1х точностью измерения: градуировочные таблицы даны через 0.1 градуса; линейность внутри таблиц в принципе достойная, поэтому точность ограничена в первую очередь усилителем и измерителем тока. В моём случае, хотелось добиться точности поддержания 0.1 градуса, поэтому измеритель настроен на 1/32 градуса: это даёт

3 кванта на 0.1 градуса, таким образом, имея нормальный «шум» регулирования +-1 квант мы остаёмся в пределах всё тех же 0.1 градуса. Использование 1/32 позволяет работать с фиксированной точкой — 5 бит = дробная часть, остальное — целая. В 16 бит это получается представить от 0 до 2047 °. Вместо работы с отрицательными числами, мы будем работать в кельвинах вместо цельсиев, таким образом — представляется от 0 до 2047 °K, что эквивалентно от -273 до 1775 °C; с шагом в 0,03125 °.

V. Диапазон настраиваемости.

Для управления микрореактором с мощной силовой установкой может оказаться что для нагрева на 10 градусов достаточно 1% мощности, в то время как для большой инертной печи для того чтобы подогреть на градус едва-едва хватает 100% мощности подогрева. (В реальной жизни, это выглядит так — есть несколько подогревателей с ручным управлением — они включаются отдельным рубильником и производят начальный нагрев, в дальнейшем поддержание рабочей точки обеспечивает терморегулятор, управляя еще одним подогревателем, который на полной мощности выдаёт максимум +10°C к тому, что нагрели постоянно включенные). Исходя из этого, предельным коэффициентом пропорциональности логично предположить 100% мощности на 1 градус. Больше не имеет смысла, так как мы хотим получить управляемость в 0.1 градуса. Минимальный, для простоты, я взял инверсным — 1% мощности на 100 градусов.

Диапазоны временных коэффициентов вычисляются просто исходя из наших условий работы регулятора. Так как мы управляем через мощностью симистор путём вычисления задержки момента включения после прохождения через 0, предельная частота работы регулятора — 50Гц. Если мы уверены, что управляем мощностью которой пофиг плюс или минус, мы можем работать на 100Гц, но это не всегда так, и потому лучше каждый раз дозировать равное количество как положительной так и отрицательной полуволны. Для упрощения жизни, я снизил время работы до 25Гц, тем самым любое вычисленное воздействие будет действовать в течение 4 полуволн, и за это время у меня будет возможность рассчитать новое воздействие.

Таким образом, постоянные времени задаются через 1/25 сек, от 0 до

2000 сек (2000*25 = 50000, как раз в 16бит влазит).

Ну и еще у нас есть ограничение мощности минимальное и максимальное, от 0 до 100%.

VI. Управление мощностью.

Начиная с этого момента все теоретические выкладки заканчиваются, начинается горькая практика, привязанная к конкретной реализации.

Итак, мы уже решили что управляем задержкой открывания симистора после прохождения через 0. Таким образом, задержка в 0 означает 100% мощность, бесконечная задержка = 0% мощности.

Вопрос: с какой точностью мы можем управлять мощностью? Вообще, с точностью отсчета времени нашего таймера. С другой стороны, какая нужна мощность? Мы вычисляем какой % мощности нужно подать на 0.04сек. В принципе, по опыту, управления мощностью даже с точностью в 1% на частоте в 0.1сек хватает для поддержания температуры в 1 градус. У нас управление 0.04сек (в 2.5раза быстрее). Поэтому было принято решение рассчитать таблицу мощности через 1/250 от максимума (с шагом в 0.4%). Это позволяет таблицу иметь не сильно большую (500 байт), и при этом иметь точность выше 1%. Если ваш случай требует бОльшей точности — пересчитать не так сложно.

Теперь поговорим о расчете этой самой таблицы. Во-1х следует учесть, что есть момент срабатывания сигнала прохождения через ноль. В моем случае — 12В. То есть когда входное напряжение упадёт ниже 12В, я получу сигнал прохождения через 0.

Читайте также:
Схема регулятора мощности на 3 квт

Это означает, что для 100% мощности время запуска = времени прохождения 12В.

Процессор у меня работает на частоте 32786, PLL настроен на 384/2, полуволна имеет 100Гц, откуда получаем, что код для загрузки константы в таймер для времени T имеет вид:

Нам нужно рассчитать время задержки, дающее равномерное увеличение площади включенной части синусоиды. То есть нам нужно иметь отсчеты времени, дающие равномерное увеличение мощности. Полная мощность, которую мы выдаём — это интеграл по всей синусоиде. [кто знает, как на хабре формулы вставлять? никак? пишу в maple-нотации тогда].

Таким образом, нам нужно пройтись по всем Q с заданной точностью, и для каждой из них найти T.

Я для себя это решил вот таким тупым способом:

Всё, на выходе мы получили табличку в 250 значений, соответствующих константам загрузки таймера до момента поджига после получения сигнала о прохождении через 0 (точнее, через 12В, как я говорил выше).

VII. Измерение входных данных

Я пропускаю этот вопрос, потому как он достоен отдельной большой статьи. О том, как я решал вопрос с термосопротивлением, можно найти в архиве почившего в бозе моего блога.

Главное что нам надо знать, это что мы измеряем данные с нужной нам частотой (в данном случае — 25Гц), и нужной точностью (на выходе — число от 0 до 2048 градусов кельвина через 1/32 градуса). Данные предполагаются уже нормализованные для всех дальнейших расчетов.

Если будет кому интересно — пишите в комментах, распишу в следующий раз как это делается для термопар.

VIII. Вычисление воздействия

И вот свершилось: у нас есть все данные для того, чтобы наконец-то произвести то, ради чего мы всё затевали: вычислить какую же мощность следует подать на управляющий элемент.

Вспомним еще раз формулу ПИД регулятора:

U = K * ( Err + (1/Ti)*Int + Td*dErr )

  • U — мощность, которую следует выдать;
  • K — пропорциональный коэффициент (обратите внимание — вынесен за скобки, почему — чуть ниже опишу);
  • Ti — постоянная времени интегрирования. Обратите внимание — в расчетах используется обратная величина;
  • Td — постоянная времени дифференцирования
  • Err — текущее рассогласование (разница между уставкой и измеренной температурой
  • dErr — производная рассогласования (разница между текущей и прошлой ошибкой)
  • Int — накопленный интеграл рассогласования (сумма всех Err’ов, кои мы видели)

Мы снова пришли к вопросу, который поднимался в разделе III: этим будут пользоваться техники. Поэтомоу крайне важно не допустить классической ошибки всех реализаций — «размерности коэффициентов как получится». Мы делаем прибор для управления физическим процессом, а значит, модель должна соответствовать.

Произведём вывод всех размерностей. Частично забегая вперёд я уже описал в IV, но теперь раскроем подробнее:

  • U — имеет величину в % мощности. Еще точнее — в 2/5 от % мощности, так как у нас таблица идёт через 1/250 от 100%.
  • Err — рассогласование, задаётся в градусах. Точнее — через 1/32 градуса.
  • Int — интеграл, представляет собой сумму градусов во времени — а значит, имеет размерность градус*сек. Точнее — (1/32 градуса)*(1/25 сек)
  • Ti — задаётся через 1/25 сек
  • (1/Ti)*Int — после вычисления даёт вклад, имеющий размерность (1/32 градуса).
  • dErr — производная, имеет размерность градус/сек, а точнее (1/32 градуса)/(1/25 сек)
  • Td — задаётся через 1/25 сек
  • Td*dErr — после произведения приводит вклад к размерности (1/32 градуса)
  • (. ) — итак, все слагаемые под скобками приведены к размерности (1/32 градуса)
  • K — согласует U и (. ), а значит имеет размерность процента-на-градус, точнее (2/5)%/(1/32 градуса)

Вот теперь хорошо видно, зачем выносится за скобки пропорциональный коэффициент — это позволяет оставить диф и инт коэффициенты просто постоянными времени, в результате оператор при настройке оперирует простыми и понятными числами — процентом на градус для пропорциональной и секундами для интегральной и дифференциальной коэффициентами.

А благодаря удобному подбору положения точек и размерностей времени, как мы сейчас увидим, все расчеты производятся практически «в лоб».

Кроме одного — у нас есть величина Ti, а для расчета требуется 1/Ti. Операция деления большой разрядности — очень дорогая. Операция умножения в разы дешевле, поэтому воспользуемся отличной статьёй Division by Invariant Integers using Multiplication. У нас ведь K / Ti / Td меняются крайне редко, а потому мы можем себе позволить как угодно извращаться с ними после их изменения, главное чтобы основной цикл расчетов работал быстро.

Таким образом, вместо Ti для расчетов мы раскладываем в набор Ti_m, Ti_sh1, Ti_sh2; и на каждом цикле производим вычисление:

Теперь производим расчет баланса разрядности. Для этого распишем полную формулу пошагово:

  1. Eo = E ; Нам нужна прошла ошибка. Ошибки — по 16бит
  2. E = Y-X ; Вычисляем новое рассогласование. 16bit
  3. Int = Int + (E+Eo)/2 ; Интегрируем ошибку. При этом считаем полусумму разности (разностная схема). 32bit = 32bit + 16bit
  4. cI = Int * (1/Ti) ; Считаем интегральный вклад — 32bit * 32bit => 32bit
  5. cD = Td * (E-Eo) ; Считаем диф вклад — 16*16 => 32bit
  6. PID = E + cI + cD ; Подскобочное; 16+32+32 => 32bit
  7. U = K*PID/256 ; Коэфф; 32*16/8 bit => 40bit.

При всех расчетах положение точки вплоть до 7го шага остаётся на 5м справа месте. В последний момент происходит интересный финт ушами. K задаётся через 1/256, соответственно, после умножения точка сдвигается влево до 5+8=13 места, поэтому мы должны у результата отбросить младшие 8 бит. И самый нижний байт результата — нужная нам мощность через 2/5%. Это — еще одна причина, по которой мощность выровнена по шагам в 1/250 — это позволяет результат уложить в один байт и получить легко по таблице нужный результат.

Читайте также:
Схема подключения фотореле

Дальше, помним, что нас интересует мощность только от 0 до 250 — поэтому 7й шаг вычислений идёт очень просто, как только мы получаем отрицательное число — сразу складываем uMin. Как только выяснили что любой старший байт не ноль — сразу складываем uMax. И только если мощность складывается в диапазоне — производим проверку на меньше uMin или больше uMax.

Если вдруг кому интересно:

IX. Применение воздействия.

Итак, у нас есть рассчитанное воздействие, и наша задача — применить его. Для этого работает общий цикл работы с частотой 50Гц. На четном цикле — производится измерение и вычисление, на нечетном — применение воздействия. Таким образом, общая схема получается: выставлена мощность, через одну синусоиду производится измерение и вычисление, еще через одну — применение новой.

X. Подводные камни.

По сравнению с разностной схемой, подводных камней у прямой схемы крайне мало, вот список тех, которые я видел:

  • Учет размерностей. Самое важное, и самая частая ошибка. Нельзя просто взять U=K*(Err+Ki*Int+Kd*Diff), без оговаривания ЧТО есть K, Ki, Kd. И с какой точностью. Особенно важно для коэффициента Ki, который имеет размерность обратную времени — если операция идёт в целых числах, НЕЛЬЗЯ просто умножать на него — так как там должно быть ДЕЛЕНИЕ, а обратное число в целых числах не представимо.
  • Учет знака. Второе очень важное — учет знака. Все операции должны быть знаковыми, интеграл обязан накапливаться знаковый — так как он не только замещает пропорциональную составляющую, но и позволяет сопротивляться внешним воздействиям, например — выделению тепла самой смеси; и тогда его знак отрицательный.
  • Учет переполнения. Нам важно получить либо мощность от 0% до 100%, либо факт того, что вычисленная мощность больше 100% или меньше 0%. Нет нужды производить все вычисления, если мы получили отрицательный подскобочный результат, например. Но при этом важно учесть, что при произведении-сложении может произойти переполнение — и его нужно учесть как «больше 100%», а ни в коем образе не оставить результат после переполнения. Это чревато в первую очередь отсутствием регулирования когда требуется — объект ниже требуемой температуры, а мощность не подаётся
  • Учет времени вычислений. Необходимость великоразрядных умножений (при кривой реализации — еще и деления) требует времени, поэтому крайне важно просчитать время выполнения самого худшего варианта вычислений, и оно должно быть меньше, чем свободное время между измерениями. Невыполнение этого условия ведёт к неуправляемому объекту, который «вроде работает, но как-то не так

Регулятор скорости вращения вентилятора по температуре

  • Цена: $2.03
  • Перейти в магазин

В одном из обзоров в каментах я опрометчиво пообещал сделать обзор этой железки. Поскольку я не высокопоставленный политик – обещания надо выполнять.

Как я и обещал – никаких замеров, осцилограмм, разборки, распайки и трассировки схемы по печатке – НЕ БУДЕТ. Уж простите – не обладаю ни соответствующим инструментом, ни навыками, ни зрением… Но что смогу – сделаю.

Как-то решил я собрать себе железку-медиасервер. Ну чисто мультики крутить. Помимо всего прочего – хотелось смотреть мультики без звукового сопровождения вентиляторов. И вот набрел на данный лот. Эта железка позволяет регулировать скорость вращения 3-х пинового вентилятора. Так же работает с 2-пиновыми! Регулировка происходит по температуре внешнего термодатчика. Все пороги регулировки можно настраивать:

1. При включении вентилятор запускается на заданном минимальном уровне.
2. При превышении заданной минимальной температуры, дальнейшее повышение температуры ведет к пропорциональному повышению оборотов
3. При превышении температуры выше заданного предела – вентилятор крутится на 100%.

На плате есть три светодиода, которые индицируют работу и выбранные настройки. А также – единственная кнопка, которая и управляет настройками.

На али так же можно найти и другие похожие регуляторы, в т.ч и для 4-хпиновых вентиляторов. Может быть дешевле, красивше, быстрее доставка итп. Не могу ничего сказать за них – мне достался именно этот лот.

Размеры платы небольшие (из измерительных инструментов таки нашлась в хозяйстве рулетка). Провода и датчика, и вход питания – короткие.

Провода питания впаяны в плату. Хорошие – в силиконовой изоляции. Кроме длины имеют еще один недостаток – они не соединены вместе, т.е. просто впаяны два разных провода. Впрочем – при их длине это не заметно.

Датчик температуры гораздо симпатичнее. Но длина его кабеля совсем грустная – монтировать плату нужно рядом с местом замера. Сам датчик мне прям нравится – аккуратная капелька. При необходимости ее легко можно зачеканить в радиатор (просверлив маааленькое глухое отверстие). За счет размера он имеет минимальную тепловую инертность, что тоже хорошо.

Кому интересно – плата чуть более подробно

С обратной стороны ничего интересного нет. Ну разве что только надписи

Для подключения вентилятора впаян стандартный трехпиновый разъем. Как говорил выше – двухпиновые вентиляторы также будут работать и регулироваться (проверил). Рядом – разъем для датчика (что меня удивило – уж датчик то впаять можно было — как провода питания. Экономия была бы)

Для того, чтобы представить чуть больше информации, чем фото с линейкой, был собран стенд из вентилятора и блока питания от ближайшего хаба.

Подключаем – вентилятор тихонько запустился…. Надо сказать, последние пару дней у нас установилась долгожданная (?) жара в +30 и выше. Легкий ветерок на рабочем месте так понравился, что написание обзора отодвинулось на пару дней :)
Поработав не менее получаса плата почти никак не нагрелась. Ну в смысле – ощупывание пальцами аномальных температур не выявило. Ладно, достанем градусник из закромов.

Читайте также:
Кнопочный выключатель сети с гальванической развязкой

Ого – а КРЕНКа то заметно греется! Хотя дельта с окружающим воздухом меньше 10 градусов…. Забегая вперед, скажу, что приватизированный БП оказался (вопреки надписям на корпусе) не 12В, а все 14 (а на холостом ходу и более 15) Так что падение почти 10 вольт на пассивном регуляторе – просто обязано греть воздух. Странно что пальцами я не заметил нагрев – может корона?

Кстати – этот неожиданный тест показывает, что данный регулятор можно применить и на автомобиле (у меня как раз завалялась одна автомобильная магнитола на горячем PX5 с пассивным жестяным охлаждением).

У продавца на странице товара полностью отсутствует какая-либо инструкция по программированию контроллера. К счастью, в век интернета найти инструкцию не проблема

В принципе все просто и понятно. Но для тех, кто не владеет басурманским расскажу подробнее.

Контроллер имеет три настройки скорости/температур и дополнительно – настройку трех режимов (три настройки, три режима, три светодиода… почему же кнопка одна?):

1. Настройка «холодных» оборотов. Во время нормальной работы – после включения, когда горит светодиод 2: однократное нажатие на кнопку увеличивает скорость на 5%. Двойное нажатие – уменьшает на 5%. При нажатиях загораются соответственно 3 (для увеличения) или 1-й (для уменьшения) светодиоды. Если достигнут предел регулирования (некуда увеличивать или уменьшать) – то соответствующий диод остается гореть.
Также, после любого нажатия, 2-й начинает мигать, сообщая что значение было изменено и через 20сек мигания — новое значение прописывается в память. Это значение (на графике PO) – минимальные обороты, с которых стартует вентилятор (в зависимости от режима – см ниже).
2. Настройка минимальной температуры, с которой начинается регулирование (на графике Tu). Для перехода в настройки нужно во время нормальной работы нажать кнопку на 3 сек. Начнет мигать светодиод (возможно не один) показывающий текущую установку Tu (вторая колонка в таблице). Изменяется установка так же – однократное нажатие – в сторону увеличения, двукратное – уменьшения. ПО ОКОНЧАНИИ УСТАНОВКИ НУЖНО НАЖАТЬ КНОПКУ НА 3 СЕК. Иначе новая установка НЕ ЗАПОМНИТСЯ!
3. Настройка интервала от нижней до верхней (на графике Td). В это настройку контроллер переходит сразу после сохранения значений Tu. Светодиод(ы) начинают мигать в 2 раза чаще. Отображают текущие настройки (таблица – колонка 3). Смена значений опять так же – одно и двукратным нажатием. ТАК ЖЕ НЕ ЗАБЫВАЕМ СОХРАНИТЬ НАСТРОЙКИ долгим нажатием!
Запоминаем – настройка PO сохраняется сама через 20сек. А Tu и Td – требуют сохранения долгим нажатием.

Теперь к режимам.
До достижения минимальной температуры вентилятор может себя вести по-разному. Предусмотрено три варианта:

1. Вентилятор крутится со скоростью PO с момента включения и до достижения Tu.
2. Вентилятор НЕ крутится, пока температура не достигнет Tu-2 (т.е. на 2 градуса холоднее, чем заданная минимальная)
3. Вентилятор НЕ крутится, пока температура не достигнет Tu-5 (т.е. на 5 градусов холоднее, чем заданная минимальная)

Надо сказать, что если табличка с графиком находится в соседних лотах довольно часто, то описание этих режимов и их настройки есть далеко не во всех. А уж понять, что написано – можно только проверив экспериментально :)

Итак, для входа в настройки режима нужно выключить питание. Отключать вентилятора от контроллера, как везде написано, НЕ НУЖНО (хотя и можно). Зажать кнопку, включить питание. Через 3 сек светодиоды начнут моргать двойными вспышками. Отпустить кнопку. Останется мигать светодиод с номером, соответствующим текущему режиму.

Меняем режим нажатием кнопки. Сохраняем – удержанием 3сек (светодиод перестает мигать).

Температура старт/стопа в режимах 2 и 3 имеет некоторый гистерезис, так что не стоит переживать за разболтанку в граничной точке.
Мне понравилось играться во 2 режиме – изначально вентилятор остановлен. (дописываю это уже утром – пока жара не такая сильная). Зажимаю датчик в пальцах – стартует сразу. Отпускаю – крутится «на минималках». Крутится несмотря на то, что датчик обдувается. Прикасаюсь к датчику влажными пальцами – испарение воды охлаждает датчик ниже порога гистерезиса – вентилятор останавливается.

Поиграв настройками, я вспомнил, что в загашнике есть еще один инструмент. Ц-шка.

Итак – скинул PO в минимум начал повышать скорость и замерять напряжение на вентиляторе. Да, знаю, Ц-шка у меня ни разу не true RMS, поэтому на точные значения можно не рассчитывать, но тенденция и график от этого не сильно поменяются:

Замер производил в обе стороны (вверх и вниз), значения на каждой ступеньке, бывало, совпадали, а бывало, отличались на 0,05-0,10в. В процессе замера напряжение не постоянно – прыгает +-0,5В, поэтому разницу не стал оформлять отдельно. При торможении крыльчатки напряжение падает (хм, странно), что тоже способствует разнице.

Именно во время измерений я и «заметил», что используемый БП выдает несколько больше заявленных 12В :)

Что еще по графику: минимальное значение слишком мало. Вентилятор на нем работает, но издает жалобные звуки. При попытке остановить – останавливается и больше не запускается без пинка. При включении тоже сам не запускается…

В детстве, когда надо было снизить шум вентилятора в системнике, мы переключали его на питание от 7 Вольт. Потому что при 5В он мог не стартовать, особенно зимой в квартире с плохим отоплением (смазка густела).

В данном случае – на второй ступеньке (4,1в) вент уверенно запускался. Но так и не зима на улице, да и вентилятор довольно свежий. Поэтому – рекомендую использовать в качестве минимального порога PO третью или четвертую ступень.

Читайте также:
Плата для аниматроники

Дальше, неплохо бы проверить собственно регулирование. Но как, если под рукой нет ни источника тепла, ни приборов для его измерения?

Ага, смотрим в таблицу и видим: минимальное значение Tu 30 градусов. Отлично – у меня как раз есть под рукой источник тепла чуть выше 30. Задаем в настройках этот порог. А также – интервал Td в 5 градусов. Зажимаем датчик между пальцами — и вентилятор довольно шустро – за 5 сек – плавно набирает полную скорость (и шум). Отпускаем – так же плавно снижает обороты. Работает! Ок, задаем Td = 10 градусов. Повторяем эксперимент – вентилятор так же бодро подхватывает, но до максимума явно не докручивает. Отлично, значит проклятый короновирус до меня еще не добрался!

Ну и еще один момент: если заметили – в месте пайки питающих проводов есть еще одна площадка – выход таходатчика. Она напрямую соединена с таким же контактом в разъеме вентилятора. Если у вас трехконтактный вентилятор и, если хотите, чтобы материнская плата контролировала скорость вентилятора – нужно допаять к этому контакту провод и подключить на материнку. Вероятно, в первоначальной конструкции предполагался разъем-мама для непосредственного подключения на разъем материнки. Но потом или начали экономить (скорее всего) или поняли, что система работает нормально только если материнка сама не пытается управлять вентилятором самостоятельно.

Выводы: Регулятор вполне справляется с заявленными функциями. Регулировка одной кнопкой с индикацией в двоичном коде хоть и сложновата, но трудностей не вызывает. Указанные в инструкции уровни и пороги – вполне адекватные. Большое количество вариантов настроек подойдет практически для любых вариантов применения.
Из минусов – отсутствие инструкции у продавца. Отсутствие провода для таходатчика.

Управление включением вентилятора для поддержания оптимальной температуры радиатора охлаждения. Часть 2

ON Semiconductor KA278RXXC NCS20071

Алексей Кузьминов, Москва

Схема Рисунок 2 работает следующим образом. При включении питания, когда температура радиатора комнатная, выходное напряжение ОУ (DA2) имеет низкий уровень (потенциал «земли»). В этом случае на затворе транзистора VT1 низкий уровень, отчего транзистор заперт, в связи с чем светодиод не горит, и вентиляторы не работают. При повышении температуры радиатора (от работы усилителя или ИП) и превышении ею верхнего порога выходное напряжение ОУ скачком переключается в высокий уровень (напряжение питания +12 В), отчего транзистор открывается, включая светодиод и вентиляторы. По мере охлаждения радиатора (от обдува вентиляторами) его температура снижается, и когда она пересекает нижний порог, потенциал на выходе ОУ переключается в низкий уровень, отчего транзистор запирается, выключая светодиод и вентиляторы. Далее процесс повторяется.

Эта схема показала надежную работу, она не содержит труднодоступных комплектующих; их общая стоимость не превышает 100 руб. Кроме того, в связи с простотой схемы её плата легко разводится и имеет размер всего 15×23 мм (см. далее).

Рисунок 5. Принципиальная схема включения вентилятора с помощью ОУ и стабилизатора
с функцией запрета выхода (Vdis).

На Рисунке 5 приведена еще одна (более простая) схема включения вентилятора, но уже без использования полевого транзистора. В схеме применен более современный LDO-стабилизатор с выходным напряжением +12 В – KA278R12 (DA2) и максимальным током 2 А, выпускаемый в полностью изолированном корпусе TO-220F-4L. Отличительная особенность этого стабилизатора – наличие входа запрета Vdis (вывод 4). При подаче на этот вход сигнала низкого уровня («земли») выходное напряжение стабилизатора блокируется, а при подаче высокого уровня (вплоть до входного напряжения), например, +12 В, выходное напряжение становится равным +12 В. Наличие входа Vdis позволяет напрямую подключить к нему выход ОУ, и, таким образом, логика работы схемы (по сравнению со схемой Рисунок 2) остается прежней. Однако для питания самого ОУ и термистора, которые должны работать постоянно, в схеме применен еще один слаботочный LDO-стабилизатор – КР1170ЕН12А (DA3) с максимальным током 100 мА, выпускаемый в трехвыводном корпусе ТО-92 стоимостью не более 20 руб. Микросхема КР1170ЕН-X является аналогом известной микросхемы LM2931-X, однако эта микросхема выпускается только для двух фиксированных напряжений: +3 В и +5 В, тогда как диапазон фиксированных выходных напряжений КР1170ЕН-X более широк и, в частности, содержит в себе напряжение +12 В (а именно – КР1170ЕН12А). В отличие от включения вентиляторов и светодиода с помощью транзистора (Рисунок 2), выходное напряжение стабилизатора DA2 (сигнал +12 F, Рисунок 5) напрямую подается на вывод «+» вентиляторов и анод светодиода (через токоограничивающий резистор R5), a вывод «–» вентиляторов и катод светодиода заземлены. В остальном схема Рисунок 5 аналогична схеме Рисунок 2. Однако в связи с большей простотой схемы её плата имеет меньший размер: 14×21 мм (см. далее). Стоимость комплектующих схемы Рисунок 5 несколько ниже стоимости комплектующих схемы Рисунок 2. Например, стоимость стабилизатора LM2940CT-12 равна стоимости стабилизаторов KA278R12 и КР1170ЕН12А вместе взятых; и это притом, что в схеме Рисунок 5 отсутствует транзистор (а он также стоит денег, хотя и небольших – не более 20 руб.). Схема Рисунок 5 также показала надежную работу.

Разводка плат и их конструкция

Разводка плат сделана автором с помощью программы SprintLayout 6.0. Хотя обе платы разведены с одной стороны и могут быть изготовлены [4] с применением одностороннего фольгированного стеклотекстолита (Рисунки 6а и 7а), если имеется возможность применения двустороннего фольгированного стеклотекстолита, то платы могут иметь дополнительный земляной контур [5] (Рисунки 6б и 7б).

Плата с разводкой Рисунок 6 не имеет крепежных отверстий, поскольку держится на достаточно жестких выводах стабилизатора и полевого транзистора, т.е. на шести ножках (Рисунок 8). Хотя стабилизатор LM2940CT-12 (DA1, Рисунок 2) в корпусе TO-220 позволяет рассеивать мощность до 2 Вт без использования радиатора, автором было установлено, что при работе вентиляторов его корпус заметно нагревается (приблизительно до 40 °C). В связи с этим для его охлаждения автор установил небольшой радиатор – алюминиевую пластину по площади чуть больше площади платы. Пластина имеет два отверстия диаметром 3 мм, с помощью которых она крепится двумя стойками с внешней и внутренней резьбой М3. К внешней части резьбы одной стойки (на шпильку) крепится корпус стабилизатора гайкой М3 (с применением теплопроводной пасты), а ко второй стойке – корпус транзистора, также гайкой – в качестве дополнительного крепежа (транзистор не нагревается, поэтому не требует охлаждения). Обе стойки крепятся к днищу корпуса (усилителя или ИП) винтами М3 с помощью внутренней резьбы (Рисунок 8б).

Читайте также:
Регулятор скорости двигателя переменного тока

Плата с разводкой Рисунок 7 также не имеет крепежных отверстий, так как держится на четырех выводах стабилизатора KA278R12. Эти выводы не такие жесткие, как у стабилизатора LM2940CT-12, однако в связи с тем, что их четыре, крепеж на них достаточно прочен. Для упрочнения крепежа на обратной стороне платы (в разводке) установлены дополнительные контактные площадки (Рисунок 7б), а выводы стабилизатора пропаиваются с двух сторон платы. Сам стабилизатор рассеивает без радиатора мощность около 1.5 Вт, поэтому к стабилизатору также прикручена алюминиевая пластина, по площади примерно равная площади платы. Вся конструкция крепится с помощью всего одной стойки с внутренней и внешней резьбой М3 (Рисунок 9). На гайку, которой прикручен стабилизатор к радиатору (с использованием теплопроводной пасты), приклеен «Секундным» клеем кусочек стеклотекстолита толщиной 0.5 мм (на Рисунке 9б хорошо заметен его край коричневого цвета) во избежание случайного контакта гайки с выводами компонентов.

О термисторах

Автором были приобретены три типа термисторов с номинальным сопротивлением 100 кОм: с радиальными выводами – MF52A диаметром 2 мм (Рисунок 10а) и MF11 диаметром 6.5 мм (Рисунок 10б) и с аксиальными выводами – MF58 диаметром чуть менее 2 мм (Рисунок 10в). Стоимость термисторов не превышает 20 руб. Измерение сопротивления термисторов при комнатной температуре показало, что наиболее близки к номиналу термисторы MF52A (100.4 кОм), а вот MF11 (90.4 кОм) и MF58 (89.5 кОм) несколько отличаются от номинала. Термистор MF58, на взгляд автора, неудобен для крепежа, поэтому он был исключен из дальнейшего рассмотрения. К термисторам были припаяны провода МГТФ-0.1; на место пайки одеты ПВХ-трубки (кембрики), а для того чтобы при градуировке в воде (см. далее) сопротивление воды не оказывало влияние на показания, место контакта кембриков с корпусами термисторов и проводами для герметизации было покрыто цапонлаком (зеленого цвета). В процессе градуировки было выявлено, что термистор MF11 в несколько раз более инерционен (из-за его более габаритного корпуса), чем термистор MF52. Так, при удалении из горячей воды (см. далее) температурой 50 °C на воздух (комнатной температуры) показания MF11 достигали номинала за 6 – 7 секунд, а для термистора MF52A – не более 1 секунды. В связи с этим MF11 был также исключен из рассмотрения. Поэтому автор использовал термистор MF52A. Этот недорогой термистор из всех представленных является наиболее современным.

Рисунок 10. Внешний вид термисторов: (а) – MF52A, (б) – MF11, (в) – MF58.

Термистор можно либо просто приклеить к обратной стороне (ребрам) радиатора теплопроводящим клеем, например, «Радиал» (Рисунок 11а), либо приклеить и для надежности дополнительно прижать скобой (Рисунок 11б). Автором были использованы оба способа, которые показали надежный тепловой контакт термисторов с радиатором.

Градуировка устройств

Для градуировки к платам были подключены: питание +14 В от отдельного ИП, термистор и светодиод (вентиляторы не подключались). Далее в емкость около 200 мл была налита вода температурой чуть выше 50 °C (51 °C – 52 °C), в которую был опущен ртутный термометр с ценой деления 0.5 °C. В процессе остывания воды (со скоростью примерно 1 °C за 1.5 – 2 минуты) её температура понижалась, и как только она достигала чуть более 50 °C, в воду опускался термистор, а подстроечный резистор R1 (Рисунки 2 и 5) настраивался таким образом, чтобы при температуре 50 °C светодиод зажигался, а при более низкой – не горел. Для этого термистор периодически опускался в воду и вытаскивался из нее. После такой настройки термистор оставался в воде, светодиод горел, и по мере остывания воды наблюдались показания термометра. Как только светодиод гас, фиксировалась нижняя граница температуры по термометру.

Градуировка показала следующее. При номиналах сопротивлений R4 = 150 кОм и R2, R3 по 10 кОм (Рисунок 2), то есть, при отношении (R2||R3)/R4 = 1/30 (см. уравнение 1), нижняя граница температуры составила 46 °C, а ее гистерезис составил 50 °C – 46 °C, то есть, 4 °C. При номиналах сопротивлений R4 = 100 кОм и R2, R3 по 10 кОм (Рисунок 5), то есть, при отношении (R2||R3)/R4 = 1/20, нижняя граница температуры составила 44 °C, и гистерезис, соответственно, составил 50 °C – 44 °C, т.е. 6 °C. Вот вопрос – a что лучше: 50 °C – 46 °C или 50 °C – 44 °C? Как ни странно, однозначного ответа на этот вопрос нет. Чем меньше гистерезис, тем чаще включаются и выключаются вентиляторы и наоборот. С другой стороны, если нижняя граница температуры составит, например, 44 °C, то при максимальной мощности, выделяемой ИП или усилителем, радиатор может нагреться так, что вентиляторы смогут охладить его только до температуры, к примеру, 46 °C, а до 44 °C «не дотянут». В этом случае вентиляторы будут постоянно работать, сводя на нет всю логику работы устройства. В конце концов, можно выбрать среднее отношение между 1/20 и 1/30, например, 1/24; в этом случае гистерезис составит 50 °C – 45 °C, т.е. 5 °C. Автор оставляет подобные эксперименты читателю.

Читайте также:
Регулятор мощности 220 В – схема на симисторе

Примененные вентиляторы и конструкция устройств обдува радиаторов

Для охлаждения радиаторов ИП и усилителя автор рекомендует использовать современные вентиляторы для охлаждения видеокарт, поскольку они имеют существенно сниженный уровень шума (до 20 дБ) и недороги (не более 100 руб. за штуку). Применять же вентиляторы для охлаждения системного блока компьютера, имеющие повышенный уровень шума (35 – 40 дБ) и высокую цену (до 500 руб. и более), или процессора компьютера, на взгляд автора, нецелесообразно. Размер вентилятора желательно подбирать по размеру (высоте) радиатора.

Высота радиатора для усилителя у автора составила 6 см, а радиатор для ИП имел высоту 5 см. Поэтому автором были выбраны два типа вентиляторов для охлаждения видеокарт: вентилятор ExeGate Mirage 60×10S размером 60×60×10 мм с подшипником скольжения мощностью 1.2 Вт и вентилятор ExeGate Mirage 50×10H размером 50×50×10 мм с гидродинамическим подшипником мощностью 1 Вт. Стоимость вентиляторов – не более 100 руб. /шт.

Рисунок 12. Фотография конструкций устройств обдува радиаторов
усилителя [1] (сверху) и ИП [2] (снизу).

Вентиляторы были прикручены винтами М3 с гайками к текстолитовым пластинам толщиной 2 мм, в которых были прорезаны отверстия диаметром, соответствующим максимальному диаметру лопастей. Сами же текстолитовые пластины были прикручены винтами М3 и уголками к крайним боковым ребрам радиаторов (Рисунок 12). Провода вентиляторов были пропущены через отверстия в днищах корпусов.

Результаты

Для того чтобы оценить функционирование устройств автором был проведен достаточно жесткий тест, заключающийся в следующем. На вход усилителя был подан синусоидальный сигнал частотой 1 кГц, а его амплитуда была отрегулирована так, чтобы выходной сигнал с усилителя, подключенный к нагрузке 4 Ом, имел амплитуду 16 В. Действующее значение мощности выходного сигнала, как нетрудно подсчитать, в этом случае составило 32 Вт на канал, а поскольку каналов 2 [1] – 64 Вт. Устройство управления вентилятором с гистерезисом 50 °C – 46 °C было подключено к усилителю, а устройство с гистерезисом 50 °C – 44 °C – к ИП. Через несколько минут после включения вентиляторы обоих устройств начали работать, причем, как и следовало ожидать, частота включения-выключения вентиляторов усилителя (с меньшим гистерезисом) была выше (примерно один раз в 3 минуты), чем частота включения-выключения вентиляторов ИП (1 раз в 5 минут). Время работы вентиляторов усилителя составляло около 2 минут, тогда как время работы вентиляторов ИП – около 4 минут. Здесь необходимо отметить, что мощность синусоидального сигнала более чем в два раза превышает мощность звукового сигнала (точнее – сигнала, воспроизводимого с какого-либо музыкального файла), поскольку действующее значение синусоидального сигнала составляет около 70% его амплитуды (точнее, √2/2), а действующее значение музыкального – только 30% от максимального значения его амплитуды. В связи с этим, для того чтобы музыкальный сигнал нагрел радиатор так же, как и синусоидальный, его максимальная амплитуда должна быть в √2 раз больше амплитуды синусоидального. Другими словами, при амплитуде синусоидального сигнала в 16 В, максимальная амплитуда музыкального сигнала (той же мощности) должна быть 16√2 В (≈22.6 В). При этом мгновенная мощность музыкального сигнала на нагрузке в 4 Ом составит 22.6 2 В/4 Ом ≈128 Вт. Это достаточно высокий показатель, в связи с чем эффективность охлаждения радиаторов вентиляторами налицо, что автора вполне устроило. Разумеется, подобной мощности вряд ли удастся достичь, воспроизведя на этом же усилителе на максимальной громкости даже самый «нагруженный» музыкальный файл, однако при несколько меньшей мощности, но более продолжительном времени работы радиаторы неизбежно могут нагреться до неприемлемой температуры, поэтому принудительное охлаждение радиаторов в этом случае будет своеобразной страховкой (и достаточно эффективной) от перегрева силовых компонентов как самого усилителя, так и ИП.

Заключение

Применение современной элементной базы и несложность схем позволяют конструировать простые миниатюрные устройства, включающие вентиляторы для охлаждения радиаторов силовых элементов мощных усилителей и ИП только при относительно больших выделяемых мощностях, страхуя их от перегрева, тогда как при средних и малых мощностях радиаторы охлаждаются абсолютно бесшумным конвективным способом. По сравнению с аналогичными устройствами промышленного изготовления стоимость комплектующих представленных устройств на порядок меньше, а их шумность при включенных вентиляторах существенно ниже.

Управление вентилятором от датчика температуры

Как же осуществить управление вентилятором от датчика температуры?

Многие электроприборы рассеивают некоторую мощность в виде тепла и никуда от этого не денешься. Если выделяемое тепло плохо выводится из корпуса устройства, это неизбежно приведет к сбоям в работе или даже выходу из строя вашего гаджета. Поэтому, по мере возможности, для более эффективного охлаждения добавляют вентиляторы.

Теперь вопрос: зачем крутить вентилятор в те моменты, когда тепло не выделяется, т.е. устройство работает без нагрузки? Лишний шум обычно напрягает. Для контроля температуры в месте нагрева следует установить датчик. И пусть это слово вам не кажется чем-то непостижимым, чем-то сложным. В качестве датчика будем использовать терморезисторы. Что это такое? Это обычные резисторы, но их сопротивление изменяется под действие температуры. Сопротивление может либо увеличиваться при нагреве, либо уменьшаться.

Давайте посмотрим как использовать такое свойство терморезисторов. Признаюсь честно, впервые идею я нашел на YouTube канале Виктора Сочи. Идея простая, легко реализуется, не требует больших затрат ни денег, ни времени.

Чтобы не быть голословным рассмотрим элементы, которые нам понадобятся.

Во-первых, сам терморезистор. На алиэкспрессе продают по 10шт. Цена чуть больше доллара. Есть и по 20шт. — тогда меньше доллара. Нас будут интересовать NTC-термисторы. У таких термисторов падение сопротивления происходит при увеличении температуры. Существуют еще PTC-термисторы или позисторы. У них, наоборот, растет температура — растет сопротивление.

Читайте также:
Схема термостата

Следующий элемент, пожалуй, самый важный — модуль понижающий напряжение. Удобнее всего использовать модуль показанный на рисунке. Модуль просто крошечный (2х1см) и имеет высокий КПД. Продают по 5шт. за 3 доллара. Лишние не пропадут, пригодятся для других целей.

Ну, и сам вентилятор. Размер может быть любой, в зависимости от места установки. Да и напряжение питание любое, обычно 12 или 5 вольт. Правда, следует заметить, если вентилятор на 12 вольт, то на входе понижающего модуля должно быть как минимум 13 вольт, для 5 вольтового соответственно 6 вольт. Недорогие вентиляторы размером 40х40мм можно посмотреть здесь — на 5 В и на 12 В.

Теперь посмотрим как соединить, отдельные компоненты, чтобы они стали одним целым. Посмотрите на рисунок ниже. Вентилятор припаиваем к выходным контактам модуля соблюдая полярность. Земля или GRN у нас общая для входящего и выходного напряжения. Модуль позволяет подавать на вход до 24 вольт максимум, ну, а минимум, как я уже говорил, зависит от напряжения питания вентилятора. И разумеется модуль не работает с переменным напряжением, только с постоянным. Датчик припаиваем как показано на схеме.

Начальная скорость вентилятора подбирается с помощью подстроечного резистора, расположенного с обратной стороны модуля. Собственно параллельно ему мы и припаиваем датчик. Для 5 вольтового вентилятора лучше использовать термистор на 50 Ком, для 12 вольтового — 100Ком.

Небольшое замечание: Если в одном устройстве требуется контролировать температуру нескольких модулей, соедините датчики параллельно и разметите их в нужных местах. Но помните о правиле параллельного соединения резисторов. И еще одно полезное замечание — ножки датчиков не изолированы (нет лакового покрытия). Для изоляции используйте, например, термоусадку. Если ножки датчиков случайно замкнуть толку от них не будет.

KOMITART – развлекательно-познавательный портал

Разделы сайта

  • » На Главную
  • » Радиолюбителю
  • » APEX AUDIO
  • » Блоки питания
  • » Гитарные примочки
  • » Своими руками
  • » Автомобилисту
  • » Service-Manual
  • » PREAMPLIFIERS
  • » Бесплатные программы
  • » Компьютер
  • » Книги
  • » Женские штучки
  • Готовим вкусно и быстро
  • » Игры на сайте
  • » Юмор
  • » Разное – интересное

GNEZDO NEWS

Друзья сайта

Статистика

Управление вентилятором 12V для усилителя.

Управление вентилятором 12V для усилителя.

Управление вентилятором 12V для усилителя от APEX

Приветствую, друзья. В этой статье я подобрал материал для повторения блока управления вентилятором, предназначенным для принудительного охлаждения радиатора с мощными выходными транзисторами звукового
усилителя мощности. Этот проект сделал Миле Славковик (APEX), исходники взяты с форума Diyaudio. Я не стал дробить материал на две статьи, поэтому ниже мы рассмотрим два варианта управления кулером,
это увеличение оборотов при возрастании температуры поверхности радиатора, к которой прикреплен датчик (терморезистор), и второй вариант, когда обороты увеличиваются в зависимости от отдаваемой мощности
усилителя в нагрузку, простыми словами, чем больше громкость, тем выше обороты вентилятора.

И так, схема с зависимостью от температуры с терморезистором NTC:

При создании платы использовал разводку авторского варианта с небольшими изменениями, немного выронял расположение элементов на плате, выглядит лейка так:

FAN Control with NTC by KOMITART LAY6

FAN Control with NTC by KOMITART LAY6 Foto

Список элементов схемы управления кулером с зависимостью от температуры:

– Q1 – BC517 – 1 шт.
– Q2 – BD139 – 1 шт.

– D1 – 1N4148 – 1 шт.

– R1 – 47kom/0,25W – 1 шт.
– R2 – 2,2kom/0,25W – 1 шт.
– R3 – 1Mom/0,25W – 1 шт.
– R4 – 22R/5W – 1 шт.
– Терморезистор NTC 10k – 1 шт.

– C1 – 100mF/16V электролит – 1 шт.

Как пишет автор, данная схема регулирует обороты мотора вентилятора, расчитанного на напряжение питания 12V DC, и полные обороты достигаются при температуре радиатора более 60 градусов.
На плату можно подавать 15, 18, или 24V DC, поэтому в цепи вентилятора стоит токоограничивающий резистор 22R/5W. При питании 12V DC этот мощный резистор из схемы можно исключить.
Номинал терморезистора влияет на то, при какой температуре вентилятор начнет увеличивать обороты, можете поэкпериментировать с NTC в пределах 6k8. 47k если хотите изменить порог реагирования блока управления.

Схема второго варианта (в зависимости от мощности отдаваемой усилителем в нагрузку):

Плата блока управления кулером по второму варианту:

Signal Sound FAN Control by komitart lay6

Signal Sound FAN Control by komitart lay6 Foto

Список элементов (2-й вариант):

– Q1 – BC550 – 1 шт.
– Q2 – BD902 – 1 шт.

– D1, D2 – 1N4007 – 2 шт.

– R1, R3, R4, R5 – 10kom/0,25W – 4 шт.
– R2 – 22kom/0,25W – 1 шт.
– R6 – 22R/5W – 1 шт.
– Терморезистор NTC 10k – 1 шт.

– C1 – 47mF/63V электролит – 1 шт.
– C2 – 100mF/25V электролит – 1 шт.

Я особо не вникал, какой из способов регулировки оборотов вентилятора лучше и практичнее, поэтому выбор остается за вами, если есть сомнения – почитайте форумы, наверняка эта тема уже обсосана, и не один раз.

Уважаемый Пользователь!
О том, как получить нужный материал, прочитайте информацию по кнопке ниже:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: