Регулятор мощности паяльника своими руками – варианты схем

Регулятор мощности паяльника своими руками – варианты схем

Регулятор мощности в вилке паяльника

Автор: Александр Сычугов
Опубликовано 12.04.2012
Создано при помощи КотоРед.

О регуляторах мощности для паяльников очень много написано статей и приведено множество разнообразных схем, в том числе и на сайте РадиоКот. Интерес к данному типу устройств, как видно не ослабевает, да это и понятно, ведь от него зависит качество пайки, долговечность жала паяльника и самого паяльника. И тот кто делает первые шаги в электронике, в первую очередь должен позаботится о комфортных условиях пайки. Наверно кто-то скажет: « ну вот опять о регуляторе мощности », но тем не менее хочется поделится ещё одной конструкцией, именно для паяльника, возможно она окажется кому нибудь полезной (а точнее несколькими конструкциями на данную тему).

Работая в сфере промышленной автоматики, частенько приходится производить ремонтные работы с участием паяльника на различных объектах, отдалённых от основного рабочего места, и бывает забываешь брать с собой регулятор, да и иногда приходится одалживать паяльник лицам, которые возвращают потом его с обгоревшим жалом. Кроме того, я не единственный пользователь этого паяльника, так как работаю по сменам, после этого приходится опять браться за напильник и приводить жало в порядок, к тому же из-за повышенного напряжения в сети (238В) он быстро перегревался. Размышляя над всем этим, мне пришла идея, вместо стандартной вилки паяльника использовать миниатюрный регулятор мощности, который был бы непосредственно закреплён на шнуре паяльника и сопровождал бы его всюду где он нужен. За основу была взята схема с амплитудно-фазовым принципом работы и содержащая наименьшее число деталей, дополненная индикатором включения регулируемой фазы, что упрощает регулировку за счёт визуализации по яркости свечения светодиода. Смотри схему и плату:

Плату конечно нужно проектировать под конкретный корпус. Плата 63Х32

Использование одного полупериода для регулировки себя оправдывает в отличии от двухполупериодных регуляторах с использованием симисторов, которые хороши для регулировки освещения и нагревательных приборов, не требующих дежурного режима. Паяльник всегда должен быть нагретым, даже если им какое-то время не пользуются. Это хорошо реализуется за счёт одного полупериода – повернул рукоятку влево до отказа и он всегда будет готов к работе. При необходимости осуществлять пайку — повернул рукоятку в право до зажигания индикатора и далее по яркости индикатора и можно паять. Индикатор зажигается при напряжении на нагрузке= 150. 160В и далее яркость плавно увеличивается при увеличении напряжения до 220В. Ниже 150..160В индикатор гаснет, вернее, еле заметно подсвечивается, напряжение при этом на нагрузке соответствует 127. 130В в зависимости от напряжения в сети. Для каждого паяльника своё оптимальное напряжение. Подобный регулятор я использую дома вот уже почти 30 лет и за всё время он не разу не отказал и паяльник служит столько же . Вот этот антиквариат : (проверка работоспособности, дежурный режим).

В качестве корпуса для вилки я использовал корпус от зарядного устройства для сотового телефона смотри фото: (плата и корпус)

Момент зажигания индикатора 150. 160В

Теперь регулятор мощности всегда с паяльником, как неразлучные друзья. И я забыл о проблемах с жалом паяльника. ( В данном варианте можно использовать паяльник не более 40 Вт.) . Используемые детали:

VS1 = КУ101Е; С1= 22мкФ Х 63В К50-29; R2 = ОМЛТ -0.5 10К; R3 = СП-04 0. 5Вт 47К; VD1 = SY103/ 05 ; R1 = ОМЛТ 0.5 47К ; VD2 = LED от китайского зарядного устройства. VD3 = КД209А,Б

В плате сделан вырез для резистора СП-04. Если использовать СП4-1 то вырез не нужен.

Вот ещё один вариант исполнения переносного регулятора мощности для паяльника. В данном варианте используется схема с импульсно-фазовым управлением. В отличии от предыдущей схемы, импульсно фазовый способ осуществляет более точное регулирование, смотри схему:

Данный регулятор так же снабжён индикатором мощности ( в конструкции он пока отсутствует). Регулировка осуществляется плавно от 130В до 220В. Резистор R1 = 100К, но установлен на 120К для более чёткого выражения зоны ( 45 град. Поворота рукоятки где напряжение практически не изменяется и соответствует 130В). В этом варианте используются более мощные диоды Д246Б и тиристор КУ202Л, что позволяет подключать нагрузку до 500Вт ( паяльник на 100Вт). Если использовать двухполупериодное регулирование, включив тиристор в диагональ моста из диодов Д246Б, то регулировка осуществляется от 50В до 220В. Регулятор собран в корпусе от сетевого источника питания-адаптера (пустые корпуса продаются в специализированных магазинах и стоят 40р). В корпус вмонтированы двойная клемма для вилки паяльника (от старого ТВ) и регулировочный резистор R1 120 К СП-04 0.5Вт. Используются номиналы в скобках. Под рукояткой резистора сделана шкала, проградуированная в Вольтах действующего значения 127. 220В, для точной установки мощности паяльника, смотри фото: (Плата и внешний вид) Плата 57х46

Ну уж и за одно ещё регулятор мощности для паяльника, реализующий широтно-импульсный принцип регулирования для одного полупериода напряжения. Схема этого регулятора была опубликована в одном из старых журналов радио (без транзистора VT3) и немного другой схемотехникой управления выходным тиристором. После изготовления прибора по схеме из журнала устройство не совсем хорошо работало: при повышенном напряжении сети 238В тиристор во время паузы самопроизвольно включался, при напряжении в сети 227. 230В -отрабатывал импульсы и паузы, но при этом другие экземпляры тиристоров в обще не включались (видимо, рабочий экземпляр попался с заниженными параметрами). В процессе наладки было установлено, что причиной не работоспособности являлся недостаточный ток управляющего электрода тиристора КУ202Л, поэтому был в ведён дополнительный каскад усиления на транзисторе КТ940А, смотри схему:

Читайте также:
Схема регулятора мощности на 3 квт

При этом проблемы устранились, все экземпляры тиристоров КУ202Л и КУ202Н с доработанной схемой работали.

Индикатор на тиратроне показывает длительности включения и отключения тиристора, по которым можно судить о средней мощности на паяльнике: 50% ( при минимальном импульсе), 75% (при равенстве длительности импульса и паузы) , 100% (при максимальной длительности импульса)

В регуляторе использованы транзисторы МП26А PNP Ik max= 150mA Uk э =70В U эбо = 70В h21= 20. 5 0. Тиратрон МТХ-90 VD1=Д814A VS1 = КУ202Л VT3 =КТ940А.

Все резисторы МЛТ 0.25Вт. Кроме R9 =18К 2Вт. И R11= 3.3К 0.5Вт.

В качестве корпуса для прибора так же можно использовать корпус от сетевого адаптера.

Схемы тиристорных и симисторных регуляторов

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, чтобы понять, как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Читайте также:
Регулятор скорости двигателя переменного тока

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Современная симисторная схема регулятора

Ниже приведена современная принципиальная электрическая схема симисторного регулятора мощности. Для того, чтобы разобраться в принципе работы регулятора мощности на симисторе нужно представлять, как он работает.

Симисторы в отличии от тиристоров, могут работать не только в цепях постоянного тока, а и переменного. В этом их главное отличие. Симистор также работает в ключевом режиме – или открыт, или закрыт. Для открытия перехода А1-А2 нужно подать на управляющий электрод G напряжение величиной 2-5 В относительно вывода А1. Симистор откроется и не закроется до тех пор, пока напряжение между выводами А1-А2 не станет равным нулю.

Работает схема симисторного регулятора мощности следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника) на вывод А1 симистора VS2 и один из выводов R2. При нахождении среднего вывода резистора R2 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 быстро заряжаться. Когда С1 зарядится до напряжения 30 В произойдет пробой динистора VS1 и ток пойдет на управляющий электрод G VS2 и переход симистора А1-А2 откроется (график 1).

При повороте ручки переменного резистора R2, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 30 В. Поэтому симистор откроется через некоторое время. Чем больше будет величина R2, тем больше будет время заряда С1 и симистор будет открываться с большей задержкой. Таким образом на нагрузку будет поступать меньше энергии.

Приведенная классическая схема симисторного регулятора мощности может работать и при напряжении сети 127, 24 или 12 В. Достаточно только уменьшить номинал переменного резистора. В приведенной схеме мощность регулируется не от 0 вольт, а от 30, что более чем достаточно для практического применения. Это схема была успешно повторена при ремонте электронной схемы управления скоростью вращения электродвигателя блендера.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Читайте также:
Регулятор температуры для низковольтного паяльника

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.

Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.

Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Задать вопрос автору статьи, оставить комментарий

Александр Николаевич, добрый вечер.
Сегодня собрал по Вашей схеме регулятор под заглавием в статье “Простейшая тиристорная схема регулятора”. Но он у меня не работает, точнее, сильно греется конденсатор, два просто взорвались, если можно подскажите в чём причина.

Здравствуйте, Виталий Александрович!
Электролитический конденсатор может греться или взорваться если не соблюдена полярность его подключения или от превышения величины, поданного напряжения. В данной схеме величина напряжения на конденсаторе определяется величиной сопротивления нагрузки, R2 и от положения движка резистора R1. Расчетная его величина не должна превышать 25 В.

Поэтому и установлен конденсатор, рассчитанный на напряжение 25 В. Конденсатор выйдет из строя в случае пробоя диода VD1.
Любые бестрансформаторные схемы, работающие непосредственно от сети 220 В нужно очень аккуратно собирать, так как при ошибках элементы могут мгновенно выйти из строя.

Читайте также:
Многоканальное дистанционное управление по ИК каналу

Оказалось, что напряжение конденсатора действительно ниже 25 В и второй вопрос. На сколько можно увеличить или уменьшить его ёмкость.

Емкость конденсатора не очень влияет на работу устройства и только определяет диапазон регулировки. Обычно емкость электролитических конденсаторов имеет разброс до 50%, так что его величину лучше определять экспериментально, включив в место паяльника электрическую лампочку. По ее яркости легко подобрать нужную емкость конденсатора и, в случае необходимости номиналы резисторов.

Схемы регулятора мощности для паяльника — на симисторе и микросхеме

Во время работы с электрическим паяльником необходимо следить за температурой нагрева его жала. Она должна быть постоянной и не меняться. Однако в реальных условиях показатели часто то уменьшаются, то увеличиваются. Это приводит к тому, что приходится использовать специальный регулятор мощности для паяльника.

Паяльник часто используется во время ремонта электроники

Конструкция и детали

Многих людей интересует, какая может быть конструкция у такого регулятора. Данное устройство может быть наружным, в виде небольшого отдельного блока. Иногда встречаются более компактные конструкции, которые встраиваются в паяльную станцию или в корпус розетки.

Главными деталями регулятора мощности паяльника являются резисторы. Их мощность должна составлять не меньше 0,125 Вт. Если в устройстве присутствует R5, его мощность — от 2 Вт.

Дополнительная информация! Возможно, придется подбирать другой номинал деталей, чтобы напряжение в питании не опускалось ниже 11 В.

Как функционирует контролер паяльника

Существует огромное количество схем устройств для настройки нагрева паяльной станции. Однако все они работают по одинаковому принципу, который заключается в увеличении или уменьшении входной мощности. В редких случаях тот или иной регулятор для паяльника может отличаться по таким признакам:

  • тип используемой электронной схемы;
  • установленный измеряемый элемент для определения мощности;
  • число ступеней настройки мощности.

Независимо от вышеперечисленных отличий, данные устройства в любом случае будут представлять собой обычный коммутатор для регулирования мощности.

Варианты монтажа регуляторов мощности паяльника

В зависимости от поставленных задач, устройство для настройки мощности паяльной станции можно поместить в несколько различных корпусов:

  • Вилка. Это наиболее распространенный и удобный вариант. Довольно часто люди используют для этого зарядку от смартфона или корпусы от других адаптеров.
  • Внутри паяльника. Некоторые паяльные станции имеют достаточно большие корпуса, внутри которых можно без проблем расположить регулятор. Это очень удобно, так как устройство будет всегда под рукой.
  • Розетка. Часто регулятор напряжения для паяльника располагают внутри розеток. Этот способ можно использовать, если нет вилки или не хватает места в паяльной станции.

Важно! Прежде чем устанавливать регулятор в тот или иной корпус, надо ознакомиться с инструкцией и разобраться, как это делать правильно.

Необходимые материалы и инструменты

Чтобы сделать регулятор для паяльника своими руками, понадобятся следующие материалы:

  • Тиристор — электронный ключ для пропуска тока в одном направлении.
  • Симистор — подвид тиристора для проведения тока в двух направлениях.
  • Резистор — используется для конвертации напряжения в силу тока.
  • Конденсатор — необходим для своевременного выключения тиристора.
  • Стабилитрон — нужен для стабилизации напряжения.
  • Микроконтроллер Atmega — отвечает за электронное управление.

Из инструментов может понадобиться паяльник, отвертки, нож, флюс и припой.

Электрические принципиальные схемы регуляторов температуры паяльника

Прежде чем приступить к созданию и установке регулятора, необходимо ознакомиться с основными принципиальными схемами.

Схема регулятора для паяльника без помех на микросхеме

Данный вариант используют довольно редко, так как воплотить в жизнь такую схему непросто. Однако если в доме подключено огромное количество электроники, лучше пользоваться именно таким регулятором. Он будет отлично работать и при этом не выдавать в сеть помехи.

Стоит отметить, что пользоваться данной схемой нужно только в тех случаях, если человек работает с паяльной станцией ежедневно. Если же она большую часть времени лежит без дела, можно попробовать варианты попроще.

На базе фазовых регуляторов мощности PR1500S

В данном случае устройство оснащается специальным фазовым регулятором. Других деталей в этой схеме не так много и поэтому сборка конструкции выполняется достаточно быстро.

Чтобы сделать регулятор температуры паяльника, используя эту схему, придется заранее подготовить резистор переменного типа с встроенным выключателем. Также понадобится конденсатор на 620 В. Он нужен, чтобы устранить помехи, которые могут появиться во время работы.

Регулятор мощности на симисторе КУ208Г

Это одна из наиболее простых схем, которую часто используют во время создания регуляторов мощности паяльника. Все, что понадобится для изготовления устройства — симистор и димистор.

Чтобы приспособление для настройки температуры правильно работало, пригодится димистор DB3 и симистор ВТ139.

Главное достоинство такой схемы — ее компактность. Она без проблем помещается в зарядный блок телефона.

На оптосимисторе МОС204х/306х/308х

Относительно популярная схема, которой довольно часто пользуются во время создания регуляторов. В этом случае при создании устройства рекомендуется пользоваться оптическими симисторами, так как они могут открываться, если напряжение переходит через ноль.

Также в схеме используется специальный индикатор-таймер 555 серии. Он необходим для своевременного отключения регулятора.

Важно! Все компоненты, которые используются в этой схеме, очень маленькие. Это позволяет размещать устройство практически в любом корпусе.

Регулировка на интегральном стабилизаторе

Распространенный метод настройки мощности паяльной станции — использование стабилизаторов интегрального типа. С их помощью удастся легко сделать регулятор напряжения, который позволит уменьшать и увеличивать температуру нагрева паяльного жала.

Читайте также:
Кнопочный выключатель сети с гальванической развязкой

Единственный серьезный недостаток применения таких стабилизаторов заключается в том, что они сильно нагреваются. Это часто приводит к перегреванию стабилизирующей микросхемы.

С ШИМ-контроллером

Некоторые люди решают регулировать мощность при помощи специального ШИМ-контроллера. Для таких целей можно воспользоваться любой моделью, которая работает на частоте около 1 Гц. В качестве основного коммутирующего элемента в этой плате используется полевой транзистор. Его можно купить или найти на любой старой материнке. Подойдет любой транзистор, напряжение которого не опускается ниже 12 В.

Транзисторный регулятор мощности

Многие пользуются транзисторными терморегуляторами для паяльника. Главное их преимущество заключается в том, что в них отсутствуют помехи. Еще одно преимущество таких устройств заключается в том, что они могут работать с индуктивной нагрузкой. Это позволяет использовать их не только с паяльниками, но и со светодиодными лампочками.

Монтировать транзистор необходимо на радиатор толщиной не менее трех сантиметров. Это предотвратит перегревание устройства во время его работы.

Важно! Подключаемая нагрузка должна быть меньше 100 Вт. При этом диапазон регулировки составляет от 10 до 220 В.

Регулятор мощности для паяльника на 20-36 В переменного напряжения

Если паяльник работает от сети с пониженным напряжением, для него придется делать отдельный регулятор.

Элементная база

Чтобы самостоятельно сделать такое устройство, понадобится заранее подготовить следующие компоненты:

  • Транзистор КТ815Б. Если такого нет, вместо него можно установить КТ815Г.
  • Диодный мост КЦ401А. Также для регулятора подойдет КЦ402 Б или С.
  • Диоды. Для регулятора мощности лучше использовать модели из серии Д9.

Также понадобятся конденсаторы. Рекомендуется устанавливать оксидные элементы типа К50-6.

Особенности монтажа

Чтобы изготовить такой регулятор, придется заранее заказать макет печатной платы и на нем разместить всю элементную базу. Особое внимание необходимо уделить резисторам. Дело в том, что их параметры подбираются в зависимости от желаемого предела регулирования.

Все компоненты рекомендуется размещать на радиаторе Г-образной формы. С лицевой стороны или в верхней части корпуса регулятора необходимо установить розетку для подключения паяльной станции.

Проверка и регулировка схемы

Чтобы проверить работоспособность устройства, необходимо воспользоваться мультиметром. Если во время вращения ручки регулирования мощности выходное напряжение будет меняться, значит все работает исправно. Однако иногда показатели напряжения не изменяются. Это говорит о том, что во время сборки регулятора были допущены ошибки.

Во время использования паяльника часто приходится вручную настраивать его мощность. Делается это при помощи специального регулятора. Его можно приобрести в специализированных магазинах или сделать самостоятельно.

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

Здравствуйте уважаемые читатели сайта . В этой статье я расскажу Вам, как собрать простой регулятор мощности для паяльника, позволяющий плавно изменять напряжение на нагревательном элементе, тем самым поддерживая оптимальную температуру жала паяльника.

Если жало недостаточно прогретое, то припой плавится медленно, и паяльник приходится дольше держать прижатым к выводам деталей, что может привести их к выходу из строя.

Пайка перегретым жалом так же получается непрочной. Припой не держится на таком жале, а просто скатывается с него.

Отсюда вывод: чтобы пайка не была мучением, а рабочая часть паяльника была всегда хорошо прогрета, для него нужно поддерживать оптимальную температуру.

Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.

Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты

2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.

Первый провод необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.

Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.



Схемы на тиристорах

Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.

Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.

Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.

При работе с тиристором импульс на управляющий электрод следует подавать в определенный момент, чтобы срез фаз достиг требуемой величины. Нужно определять переход полуволны в нулевой уровень, иначе регулировка не будет эффективной.



Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Читайте также:
Принципиальная схема симисторного регулятора

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

  1. 2 Конденсатора
  2. 2 переменных резистора
  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Регулятор оборотов 12 вольт для двигателя с тормозом.

  • Реле – 12 вольт
  • Теристор КУ201
  • Трансформатор для запитки двигателя и реле
  • Транзистор КТ 815
  • Вентиль от дворников 2101
  • Конденсатор

Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.

К реле подключаем 2 провода от блока питания. На реле подается плюс.

Всё остально подключается по принципу обычного регулятора.

Схема полностью обеспечила 12 вольт для двигателя.



Преимущества и недостатки

Паяльник с регулятором температуры имеет ряд плюсов и минусов.

К преимуществам такого инструмента относятся:

  • Возможность регулировки температуры;
  • Полное исключение риска перегрева и порчи чувствительных к высоким температурам радиодеталей;
  • Быстрый нагрев;
  • Доступная цена;
  • Наличие в комплекте к устройству комплекта несгораемых жал – предварительно залуженных насадок, имеющих специальное необгарающее покрытие.

Из недостатков таких устройств можно выделить:

  • Низкую ремонтопригодность;
  • Высокую стоимость качественных полупрофессиональных и профессиональных моделей;
  • Хрупкость нагревательного элемента из керамики.

Также недостатком дешевых моделей является поддельный керамический нагреватель, представляющий собой полую керамическую трубку, внутри которой расположен асбестовый стержень с намотанной тонкой нихромовой проволокой. Из-за маленькой толщины проволоки такие нагреватели очень быстро выходят из строя по причине термострикции – разрыва проволоки при ее остывании.


Регулятор мощности на симисторе BTA 12-600

Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.

Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.

Для удобства схему можно собрать на печатной плате.

Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.

К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.

К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.

Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.

1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.

Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.

Идет тестирование схемы.

Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.

Мощность можно развить до 12 вольт для авто.

Конструкция

Самый простой инструмент данного вида с терморегуляцией состоит из следующих частей:

  • Корпус с печатной платой внутри – цилиндрическая полая ручка из плотного пластика
  • Плата управления – расположенный внутри полой ручки контроллер;
  • Регулятор – резистор с переменным сопротивлением, имеющим вращающуюся круглую ручку с указанием значений температуры;
  • Светодиод – индикатор, сигнализирующий о том, что жало нагрелось до заданной температуры;
  • Трубка-фиксатор с гайкой – штуцер со вставляемым внутрь его жалом и подвижной гайкой, при помощи которой он прикручивается к корпусу;
  • Нагревательный элемент – трубка, на которую одевается жало;
  • Несгораемое жало – предварительно залуженная насадка конической формы термостойким несгораемым покрытием.

Во многих современных моделях данного электроинструмента регулятор выполнен в виде двух кнопок, значение температуры указывается на небольшом монохромном жидкокристаллическом дисплее.

Динистор и 4 типа проводимости.

Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.

Читайте также:
Датчик уровня воды с выносными электродами

Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.

В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.

Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.

Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.


Минимальная мощность

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.


Половинная мощность

Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.

Мощность, близкая к максимальной

Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.


Переключение тиристора через «ноль»

Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Топ 5 транзисторов

Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.

Как сделать регулятор мощности на симисторе своими руками: варианты схем

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Читайте также:
Плата для аниматроники

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Регулятор мощности для паяльника – разнообразие вариантов и схемы изготовления

  • Регулятор для паяльника своими руками
  • Двухступенчатый регулятор мощности
  • Двухрежимная схема на маломощном тиристоре
  • Регулятор мощности на симисторе
  • Схема на мощном тиристоре
  • Регулятор на микроконтроллере

Температура жала паяльника зависит от многих факторов.

  • Входного напряжения сети, которое не всегда стабильно;
  • Рассеивания тепла в массивных проводах или контактах, на которых производится пайка;
  • Температуры окружающего воздуха.

Для качественной работы требуется поддерживать тепловую мощность паяльника на определенном уровне. В продаже есть большой выбор электроприборов с регулятором температуры, однако стоимость таких устройств достаточно высокая.

Еще более продвинутыми являются паяльные станции. В таких комплексах расположен мощный блок питания, при помощи которого можно контролировать температуру и мощность в широких пределах.

Цена соответствует функциональности.
А что делать, если паяльник уже имеется, и покупать новый с регулятором не хочется? Ответ простой – если вы умеете пользоваться паяльником, сможете изготовить и дополнение к нему.

Читайте также:
Как сделать реле времени своими руками: схема, фото, видео

Регулятор для паяльника своими руками

Эта тема давно освоена радиолюбителями, которые как никто другой заинтересованы в качественном инструменте для паяния. Предлагаем вам несколько популярных решений с электросхемами и порядком сборки.

Двухступенчатый регулятор мощности

Такая схема работает на устройствах с питанием от сети переменного напряжения 220 вольт. В разрыв цепи одного из питающих проводников, параллельно друг другу подключается диод и выключатель. Когда контакты выключателя замкнуты – паяльник запитан в стандартном режиме.

При размыкании – ток проходит через диод. Ели вы знакомы с принципом протекания переменного тока – работа устройства будет понятно. Диод, пропуская ток лишь в одном направлении – отсекает каждый второй полупериод, понижая напряжение вдвое. Соответственно, в два раза снижается мощность паяльника.

В основном, такой режим питания используется при длительных паузах во время работы. Паяльник находится в дежурном режиме, и наконечник не сильно охлаждается. Для приведения температуры к 100% значению, включаем тумблер – и через несколько секунд можно продолжать пайку. При снижении нагрева меньше окисляется медное жало, продлевая срок службы прибора.

Двухрежимная схема на маломощном тиристоре

Данный регулятор напряжения для паяльника подходит к маломощным устройствам, не более 40 Вт. Дли силового управления, используется тиристор КУ101Е (на схеме – VS2). Несмотря на компактные размеры и отсутствие принудительного охлаждения – он практически не греется в любом режиме.

Тиристором управляет схема из переменного резистора R4 (использован обычный СП-04 сопротивлением до 47К) и конденсатора С2 (электролит 22мф).

Принцип работы следующий:

  • Режим ожидания. Резистор R4 выставлен не максимальное сопротивление, тиристор VS2 закрыт. Питание паяльника осуществляется через диод VD4 (КД209), снижая напряжение до 110 вольт;
  • Рабочий режим с регулировкой. В среднем положении резистора R4, тиристор VS2 начинает открываться, частично пропуская через себя ток. Переход в рабочий режим контролируется с помощью индикатора VD6, который зажигается при напряжении на выходе регулятора 150 вольт.

Далее можно плавно поднимать мощность, увеличивая напряжение до 220 вольт.
Печатную плату изготавливаем по размеру корпуса регулятора. В предложенном варианте использован корпус от зарядного устройства для мобильника.

Компоновка очень простая, можно разместить в корпусе меньшего размера. Никакой вентиляции не требуется, радиокомпоненты практически не греются.

Собираем устройство в корпусе, ручку резистора выводим наружу.

Классический советский 40 ваттный паяльник легко превращается в паяльную станцию, которая работает устойчивей, чем все китайские аналоги.

Регулятор мощности на симисторе

Вариант так же относится к простым схемам, рассчитанным на приборы небольшой мощности. Собственно, регулируемый паяльник, как правило, нужен для работы с микросхемами или SMD компонентами. А в этом случае большая мощность будет излишней.

Схемное решение позволяет плавно регулировать напряжение практически от нуля до максимального значения. Речь идет о 220 вольтах. Силовым управляющим элементом служит тиристор VS1 (КУ208Г). Элемент HL-1 (МН13) придает графику управления линейную форму и выступает в роли индикатора. Набор резисторов: R1 — 220k, R2 — 1k, R3 — 300Ом. Конденсатор С1 – 0,1мк.

Схема на мощном тиристоре

Если требуется подключить к регулятору мощный паяльник, силовой блок-схемы собирается на тиристоре КУ202Н. При нагрузке до 100Вт охлаждение ему не требуется, поэтому усложнять конструкцию радиатором не придется.

Схема собрана на доступной элементной базе, детали могут просто быть в ваших запасниках.

Принцип работы:
С анода тиристора VS1 снимается напряжение питания паяльника. Собственно это и есть регулируемый параметр, контролирующий температуру. Схема управления тиристором реализована на транзисторах VT1 и VT2. Питание управляющего модуля осуществляет стабилитрон VD1 вместе с ограничительным резистором R5.

Выходное напряжение блока управления регулируется с помощью переменного резистора R2, который собственно и задает параметры мощности подключенного паяльника.
В закрытом состоянии тиристор VS1 не пропускает ток, и паяльник не греется. При вращении управляющего резистора R2 блок питания выдает все большее управляющее напряжение, открывая тиристор.

Схема монтажа состоит из двух частей.

Блок управления удобнее собрать на протравленной плате, чтобы его микрокомпоненты были сгруппированы без проводного соединения.

А вот силовой модуль из тиристора и его обслуживающих элементов располагаются отдельно, равномерно распределяясь по корпусу.

«На коленке» собранная схема выглядит так:

Перед упаковкой в корпус, проверяем работоспособность при помощи мультиметра.

При вращении резистора R2 напряжение на входе в паяльник должно плавно изменяться. Схема помещается в корпусе накладной розетки, что делает конструкцию очень удобной.

Дно розетки закрывается подходящей крышкой. Идеальный вариант – не просто накладная, а герметичная уличная розетка. В данном случае выбран первый вариант.
Получается своеобразный удлинитель с регулятором мощности. Пользоваться им очень удобно, на паяльнике нет никаких лишних приспособлений, и ручка регулятора всегда под рукой.

Регулятор на микроконтроллере

Если вы считаете себя продвинутым радиолюбителем, можно собрать достойный лучших промышленных образцов, регулятор напряжения с цифровой индикацией. Конструкция представляет собой полноценную паяльную станцию с двумя выходными напряжениями – фиксированным 12 вольт и регулируемым 0-220 вольт.

Низковольтный блок реализован на трансформаторе с выпрямителем, и особой сложности в изготовлении не представляет.

Блок управления переменной величиной напряжения выполнен на контроллере PIC16F628A.

Подробности схемы и перечисление элементной базы ни к чему, все видно на схеме. Силовое управление выполнено на симисторе ВТ 136 600. Управление подачей мощности реализовано с помощью кнопок, количество градаций – 10. Уровень мощности от 0 до 9 показывается на индикаторе, который также подключен к контроллеру.

Генератор тактов подает импульсы на контроллер с частотой 4 МГц, это и есть скорость работы программы управления. Поэтому контроллер моментально реагирует на изменение входного напряжения, и стабилизирует выходное.

Читайте также:
Схема твердотельного реле, монтаж своими руками

Схема собирается на монтажной плате, на весу или картонке такое устройство не спаять.

Для удобства станцию можно собрать в корпусе для радиоподелок, или в любом другом, подходящего размера.

В целях безопасности, розетки на 12 и 220 вольт размещаются на разных стенках корпуса. Получилось надежно и безопасно. Такие системы отработаны многими радиолюбителями и доказали свою работоспособность.

Как видно из материала, можно самостоятельно изготовить регулируемый паяльник с любыми возможностями и на любой кошелек.

Онлайн помощник домашнего мастера

Регулятор мощности своими руками: расчет характеристик, схемы подключения, сборка и проверка (инструкция + видео)

Стремление управлять электроприборами, влиять на их производительность привело к появлению диммеров. Наиболее популярный высоко востребованный – симисторный регулятор мощности, который при владении паяльником легко можно собрать своими руками.

Имея в своей конструкции катод и анод, регулятор мощности наиболее эффективно управляет направлением и силой тока, что напрямую отражается на управлении таких важных устройств как паяльник, сети освещения, динамики стереопроигрывателя, работа вентилятора.

Радиолюбители по достоинству оценили возможность разнообразного применения диммеров на основе симисторов. Некоторые вместо них используют реле, пускатели, контакторы, что в принципе, можно делать. Но преимущества в долговечности, прочности, в отсутствии искрения отодвигают все вышеназванные устройства на второй план.

Проанализировав схемы, в которых используется такая разновидность тиристоров, было выявлено, что их использование гораздо дешевле обходится, чем транзисторный сборки и микросхемы.

Краткое содержимое статьи:

Варианты монтажа

Схемы сборки регулятора мощности могут быть как простыми, так и сложными.

Понадобится:

  • Коробка под диммер;
  • Печатная плата;
  • Радиодетали для сборки схемы;
  • Паяльник;
  • Припой;
  • Флюс;
  • Пинцет.

Корпус можно изготовить из пластика, вырезав заготовки и склеив коробку или подобрать по размеру платы, используя старое зарядное устройство, тройник, одинарную или двойную внешнюю розетку и прочее.

Важно, чтобы вся микросхема поместилась в нем и прибором было удобно работать. Подбор корпуса зависит как от мощности, так и задач регулятора напряжения.

Если диммер изготавливается под паяльник, то можно его вмонтировать в заранее приобретенную подставку для паяльника. Когда нужно регулировать мощность лампы накаливания или скорость вращения вентилятора, то его нужно разместить так, чтобы им было удобно пользоваться. Лучше установить в корпус устройства, когда внутри его есть место, или жестко прикрепить к нему.

Простой вариант монтажа регулятора мощности своими руками

Существуют различные варианты сборки диммеров. Отличия – в полупроводниках (тиристорах и симмисторах), регулирующих интенсивность подачи силы тока.

Когда в схеме присутствует микроконтроллер управление диммером – намного точнее. Таким образом, можно собрать простой регулятор мощности на тиристоре или симисторе своими руками.

Между этими полупроводниками есть отличия.

  • Тиристор – позволяет течь току однонаправленно. При реверсе или отсутствии подачи напряжения он просто закрывается, работает как простой микровыключатель, точнее – пускатель. Только в отличие от последнего, не искрит и имеет более стабильные характеристики.
  • Симистор – одна из его разновидностей. Проводит ток в любом направлении. Это 2 тиристора, спаянных вместе в одном корпусе.

Наиболее популярная схема, которую часто можно увидеть на фотографиях – сборка регулятора мощности для паяльника своими руками.

Инструкция как сделать регулятор мощности

Первоначально нам нужно изготовить и подготовить для монтажа печатную плату. Нет необходимости использовать специальные компьютерные программы для этого и распечатывать ее лазерным принтером на специальной бумаге. Схема не так уж сложна, чтобы использовать дорогостоящее оборудование для ее изготовления.

Самый простой путь – самостоятельно сделать печатную плату из куска текстолита в такой последовательности:

Отрезаем нужный размер, обезжириваем и зашкуриваем поверхность. Карандашом создаем контуры схемы, потом обводим их маркером. Производим травление хлористым железом для удаления остатков меди с поверхности платы.

Просверливаем нужные отверстия под концы радиодеталей. Протираем изготовленную плату жидким флюсом (растворенным в спирте канифолем). С помощью тонкого слоя припоя создаем токоведущие дорожки и площадки.

Когда плата готова, впаиваем в нее следующие радиодетали:

  • Микроконтроллер;
  • Симистор bta16;
  • Динистор db3;
  • Резистор, на 2 кОм;
  • Конденсатор, на 100 нФ;
  • Пластина со штырьками.

Также нам понадобится штепсельная вилка, шнур и розетка. И коробка, куда будет помещаться плата с микросхемой.

Монтаж диммера выполняем в такой последовательности:

Откусываем и впаиваем штырьки (4 шт.). Размещаем все детали кроме микроконтроллера. Тщательно пропаиваем. Тщательно зачищаем промежутки между токоведущими дорожками с помощью иглы и щеточки;

В алюминиевом радиаторе просверливаем отверстие. Закрепляем на нем симистор. Наносим термопасту КПТ-8 на поверхность радиатора. Подключаем переменный резистор.

Куском провода замыкаем средний и крайний выводы. К крайним выводам припаиваем провода. Противоположные подсоединяем к плате в соответствующем месте.

Берем розетку с подключенными к ней двумя проводами. Один конец жилы припаиваем к плате. Другой – к сетевому шнуру. Оставшуюся жилу (от вилки) припаиваем к плате. Помещаем всю собранную «начинку» в коробку.

Когда диммер собран, берем в руки мультиомметр и прозваниваем схему. Когда все в порядке, подключаем настольную лампу и вращением ручки на корпусе устройства изменяем ее интенсивность свечения. Ее яркость будет расти и падать в зависимости от направления вращения.

Если лампа ведет себя так, как описано, то регулятор мощности сделан правильно, и его можно использовать по-назначению.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: