Регулятор скорости двигателя переменного тока

Регулятор оборотов для электроинструмента своими руками

Приветствую всех зашедших!

Как правило, бюджетные модели электроинструмента, будь то болгарок, дрелей, различных пил, наждаков не оснащены регулятором оборотов и плавным пуском, это удешевляет конструкцию, но делает обращение с инструментов неудобным в некоторых случаях, к тому же сокращает срок его службы. Резкий старт приводит, во-первых, к высокому пусковому току, превышающему номинальный в несколько раз, и хоть этот переходный процесс длится совсем недолго, он отрицательно сказывается на жизни обмоток двигателя, щёток. А во-вторых, попросту сильный рывок при старте создаёт чрезмерную нагрузку на механическую часть инструмента, редуктор, снижая срок службы. Выходом может послужить самодельный универсальный регулятор оборотов, который обеспечит к тому же и плавный пуск. Если смонтировать его в виде отдельной розетки-переноски, то можно использовать с любым инструментом мощностью до 3-х кВт. Для сборки такого устройства не понадобится каких-либо сложных схем – всё обойдётся буквально 5-ю детальками, которые необходимо собрать в соответствии со схемой:

Главным элементом схемы является силовой симистор – именно через него будет протекать ведь ток, потребляемый инструментом. Поэтому здесь важно использовать мощный симистор, например, распространённый BTA16-600, рассчитанный на ток в 16А и максимальное напряжение в 600В. Ток в 16А, при напряжении в 220В, будет соответствовать мощности примерно 3,5 кВт, однако для данного симистора это самый максимум – лучше оставить запас и не подключать потребители свыше 2 кВт. Для использования с более мощными приборами стоит подыскать симистор на ток в 20-30А, но с другой стороны, инструмент свыше 2 кВт используется не так уж и часто. В процессе работы симистор может довольно значительно нагреваться, неспроста он выпускает в корпусе ТО-220 и имеет фланец для крепления радиатора. Пренебрегать этим не стоит и после сборки схемы симистор нужно установить хотя бы на небольшой радиатор. Внешний вид симистора:

Также для сборки схемы потребуется несколько пассивных элементов. Среди них – плёночный конденсатор ёмкостью 100 нФ (он же 0,1 мкФ), который обязательно должен быть рассчитан на напряжение в диапазоне 400..630В. Возможный внешний вид такого конденсатора:

Понадобится обычный постоянный резистор сопротивлением 2 кОм, лучше всего взять мощностью 1-2Вт. На фото ниже представлен отечественный резистор.

Ещё один необходимый компонент – динистор, его второе название “диак”, потребуется тот, что имеет маркировку “DB3”, данный динистор очень распространён и продаётся в любом магазине радиодеталей. Имеет похожий на резистор корпус:

Для осуществления регулировки понадобится переменный резистор, вращением которого и будет регулироваться мощность электроприбора. Переменные резисторы могут иметь разную характеристику (зависимость сопротивления от угла поворота), в аудиотехнике часто используются логарифмические, здесь же необходим самый простой – линейный. Для импортных переменных резисторов эта характеристика соответствует букве “В” в начале маркировки. Сопротивление переменного резистора должно быть 500 кОм. Возможный внешний вид элемента представлен ниже.

Когда все элементы собраны, можно приступать к сборке. Собрать все элементы проще всего на небольшой печатной плате, это обеспечит их надёжную фиксацию и хороший электрический контакт. Все силовые дорожки, от входа схемы и до выхода через тиристор должны быть максимально широкими, дополнительно их можно усилить, проложив сверху припоя или напаяв отрезки медной проволоки 1-1,5 мм в диаметре, это позволит избежать потерь на проводниках платы. Саму плату можно сделать с помощью лакового маркера либо простого лака для ногтей, подойдёт также и цапон-лак. Берётся острый предмет вроде зубочистики и на медной поверхности текстолита рисуются дорожки и пятачки для установки деталей, для удобства предварительно рисунок дорожек можно начертить карандашом. Переменный резистор можно установить на плату, а можно и вывести на проводах, в зависимости от дальнейшего места установки платы. После этого плата травится, для кого-то удобнее раствор перекиси водорода и лимонной кислоты с солью, и кто-то предпочитает травление в хлорном железе – более подробно о способах изготовления плат можно в интернете. Затем нужно просверлить отверстия под выводы элементов и произвести пайку – при это следует обращать внимание на распиновку симистора, полярность динистора. Для пайки используется стандартный припой ПОС-61.

Переменный резистор имеет три контакта, два соседних из которых замыкаются – от того, с какой из сторон контакты будут замкнуты, будет зависеть, в какую сторону обороты будут увеличиться, а в какую уменьшаться. После сборки платы должна получится конструкция следующего вида:

Читайте также:
Инфракрасный барьер своими руками

В таком виде плату уже можно встроить, например, в корпус какого-либо электроинструмента, требующего регулировки. Другой, более универсальный вариант – использовать регулятор в составе розетки-переноски, как показано на фото ниже. Удлинитель имеет на конце два блока – обычную розетку и корпус диммера, внутри которого спрятана плата, выход платы подсоединяется к контактам розетки. Таким образом, получился универсальный регулятор, который подойдёт к любым коллекторным двигателям, различным нагревателям и осветительным приборам. Удачной сборки!

Регулятор оборотов электродвигателя: назначение, принцип работы

В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.

Принцип работы

Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.

Среди используемых в промышленной и бытовой сфере следует выделить:

  • Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
  • Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
  • Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.

Рис. 1. Схема тиристорного регулятора

Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.

  • Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.

Регулировка оборотов на транзисторах

Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.

  • Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.
Читайте также:
Плата разработки PIC для приложений RS485 и DMX512

Пример частотного регулирования

  • Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.

Регулировка оборотов переключением пар полюсов

Как выбрать?

Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.

Помимо этого для регулятора оборотов необходимо выбрать:

  • Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
  • Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
  • Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
  • Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
  • Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:

Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:

Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.

Проверьте цветовую маркировку

Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

Читайте также:
Регулятор температуры для низковольтного паяльника

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy),
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.
Читайте также:
Датчик уровня воды с выносными электродами

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Преобразователи на электронных ключах

Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Самостоятельное изготовление регулятора оборотов электродвигателя

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

  • Устройство системы
    • Схема регулятора оборотов коллекторного двигателя
    • Зачем используют такой прибор-регулятор
  • Регулятор оборотов электродвигателя 220в
    • Как сделать регулятор своими руками
    • Внедрение системы управления
    • Регулировка работы

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.
Читайте также:
Схема подключения фотореле

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Читайте также:
Схема регулятора мощности на 3 квт

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Управление скоростью вращения однофазных двигателей

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки – рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Читайте также:
Самодельные автоматические ворота

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя – разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 – скорость вращения ротора

При этом обязательно выделяется энергия скольжения – из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз – то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор – это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи – два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно “отрезается” кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки – ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования – пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно – шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения – для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры

Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель – электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы – полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы – диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора:

        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением
Читайте также:
Схема твердотельного реле на 12В

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина – не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие – массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование – основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей – INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f – частота тока

С – ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя – в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

Использование ЧП для трёхфазных двигателей

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого – магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Регулятор оборотов электродвигателя 220в без потери мощности


Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Читайте также:
Схема регулятора оборотов минидрели

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Как правильно подключить регулятор оборотов к электродвигателю

Регулятор скорости вращения двигателя может понадобится, если вы собираете станок или пытается усовершенствовать заводской. Неправильное подключение чревато падением мощности или даже поломкой мотора. Ниже вы узнаете, как установить и собрать регулятор оборотов с поддержанием мощности.

Схема регулятора оборотов для электродвигателя

Конечно, регулятор оборотов электродвигателя на 220в можно купить в магазине, но:

  1. В магазинах сложно найти платы для сетевого напряжения (основная часть рынка – регуляторы до 35 вольт).
  2. Те, что продаются для сетевых двигателей имеют посредственное качество. Мощность и скорость они не поддерживают, поэтому для станков (например, токарного) они не подходят в принципе.
  3. Промышленные контроллеры с поддержанием скорости и мощности очень дороги, и купить их сложно.

Почему бы тогда не собрать? Все детали продаются в любом радиомагазине, к тому же программировать или прошивать ничего не понадобится, хоть и понадобится микросхема.

Технические характеристики контроллера

Схема будет иметь следующие характеристики:

  1. Рабочее напряжение – от 110 до 230 вольт.
  2. Возможности регулировки – 9 – 99%. В целом, этот показатель зависит от выбранного димера.
  3. Нагрузка – до 2,5 киловатт.
  4. Рабочая мощность – 300 ватт без радиатора. Если установить хорошее охлаждение, можно ее увеличить на 20-25%.

Эта схема регулятора оборотов коллекторного двигателя на 220в достаточно тихая и имеет плавный пуск. Собрать же ее достаточно просто.

Простейшая схема регулятора

Ориентируйтесь на эту схему. Чтобы уменьшить обороты электродвигателя, необходим ШИМ модулятор, он же симистор. Это микросхема, которая модулирует ШИМ-сигнал, позволяющий задать собственное частоту.

Читайте также:
Схема регулятора мощности на 3 квт

В этой схеме роль модулятора играет микросхема U2008B. Это недорогая плата предназначена специально для регулировки оборотов асинхронного двигателя.

Как пишет Сайт компании электрические системы, также понадобится диод и резистор, чтобы снизить напряжение. На схеме они изображены со знаками D1 и R1. Также, чтобы отфильтровать поступающее электричество, необходим силовой конденсатор, обозначенный С1.

Р1, R5 и R3 – это делители напряжения, предназначенные для регулирования напряжения. Второй резистор необходим, чтобы синхронизировать внутренние блоки двигателя с симистором.

Чтобы частотный регулятор был безопасным, рекомендуется установить обычный плавкий предохранитель на 1,5 ампера.

Если вы хотите сделать профессиональную плату, возьмите эту схему для печати:

Останется только перенести ее на фольгированный текстолит и вытравить. Посмотреть инструкцию можно здесь. Цена вопроса такого регулятора – 200 рублей.

Заводские регуляторы

В некоторых случаях выгоднее взять регулятор оборотов коллекторного или асинхронного двигателя, если вы собираетесь модернизировать промышленное оборудование.

Наиболее распространенные модели:

1 Motor Speed Controller 400W. Недорогой (1300 рублей) ШИМ регулятор с простым управлением. На главной панели есть кнопка включения/выключения и 10 ступенчатый диммер. Обладает высокой производительностью и способен управлять двигателями до 400 ватт. Внутри присутствует хорошая система охлаждения и защиты. Для него ниже будет описана инструкция подключения.

2 KLS 4000-A1. Пожалуй, один из мощнейших китайских регуляторов вращения. Подключения, как такового, не требует. Достаточно вставить вилку в розетку на корпусе. Присутствует экран, где отображаются частота оборотов в минуту. Пожалуй, это наиболее удобный способ регулировки оборотов коллекторного двигателя без потери мощности. Цена начинается от 2400 рублей из Китая. В России продается с наценкой в 1,5 раза.

У российских домашних умельцев особым спросом пользуются тиристорные регуляторы оборотов.

С виду они похожи на обычные реостаты, но обладают большим запасом мощности. Впрочем, их можно самостоятельно по этой схеме.

Минусов у такого вида регуляторов достаточно много:

  1. Пропуски полупериодных волн. В связи с этим, двигатель во время работы будет постоянно шуметь. На работе двигателя это не скажется, но вот удобство работы – сомнительное.
  2. Для двигателей большой мощности они в принципе не подходят. Они удобны для запуска небольших моторов, вроде вентиляторных. Про двигатели от стиральной машины можно забыть.
  3. Стабилизация мощности достаточно низкая, желательно поставить дополнительный конденсатор, чтобы сгладить скачки напряжения.

Но есть и достоинства:

  1. Цена. Купить их можно буквально за 150-200 рублей в любом радиомагазине. Из Китая можно заказать рублей за 75.
  2. Малый размер и компактность. Их можно спрятать, они не занимают лишнего места на столе и помещаются в карман.

Способы, как подключить регулятор оборотов

Как же подключить регулятор оборотов? Рассмотрим Motor Speed Controller 400W по 3 причинам:

  1. Это наиболее популярный контроллер скоростей.
  2. С его подключением возникают проблемы, из-за разметки на китайском языке.
  3. Подключение почти не отличается от того, чтобы был собран своими руками.

Для начала, стоит изучить схему подключения, напечатанная на боковинке регулятора или паспорте устройства.

Теперь необходимо воспользоваться распиновкой на задней панели. Понадобится выбрать необходимые выводы. Контакты CCW и COM всегда закорочены, трогать их не нужно. Для подключения понадобится задействовать 3 нижних контакта. АС

АС – это ноль и фаза (провода устанавливаются произвольно, все же ток переменный). В FG вставляется провод заземления, если оно есть.

В общем, на этом подготовка закончена. Остается только вставить штекер от регулятора к клеммнику двигателя.

Рекомендуется в разрыв фазного провода поставить конденсатор.

Он поможет сгладить поступающее напряжение. Также не помешает установить ферритовый фильтр. Оно поможет сгладить помехи при работу.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: