Схема блока управления электромагнитным клапаном

Электромагнитный клапан холостого хода (ЭПХХ) карбюратора

Электронное управление карбюратором в своём типовом варианте имеет несколько составляющих узлов, среди которых наиважнейшая роль отведена электромагнитному клапану. Данный элемент топливораспределительного механизма отвечает за стабилизацию и тонкую настройку холостого хода мотора, что в итоге позволяет экономить владельцу карбюраторного агрегата десятки тысяч рублей на топливе ежегодно. Более подробно о том, что это за чудо-узел, как он работает и каким поломкам подвержен, поговорим в представленном ниже материале.

Устройство и принцип работы электромагнитного клапана

Электромагнитный клапан, также называемый экономайзером принудительного холостого хода (ЭПХХ) – неотъемлемая составляющая любого карбюратора современных автомобилей. Начало активного использования этого узла приходится на 80-е годы прошлого столетия, когда «битва» между инжекторными и карбюраторными агрегатами обострилась. Во многом это связано с тем, что первые имели заметно меньший расход топлива, а это уже подкупало большее количество автолюбителей.

Дабы минимизировать расход карбюраторных моторов автомобильные инженеры принялись за их активную электронизацию. В нескольких словах, суть последней заключалась в том, чтобы посредством использования электронных устройств понизить показатели расхода горючего. В итоге, электронизация вылилась в появлении электромагнитного клапана карбюратора, а также ряда других электрических девайсов в конструкции данного узла. Но зачем это было нужно и как помогло конкуренции карбюраторных моторов с инжекторными? Для того чтобы ответить на такой вопрос, стоит обратить внимание на принцип работы ЭПХХ.

Итак, электромагнитный клапан карбюратора – это устройство, работающее от электрического тока и выполняющее вполне конкретные функции. Точнее, работает оно для организации стабильного и оптимального холостого хода в, так называемом, принудительном режиме работы мотора. Суть оптимизации заключается в том, что при работе двигателя в режимах, не требующих потребления топлива (переход на передачу пониже, качение по инерции и т.п.), ЭПХХ отключает его подачу, совершенно не привлекая к движению дроссельную заслонку. Происходит это посредством передачи топлива по специальным каналам на холостом ходу. В ходе данной транспортировки функционирует лишь жиклёры холостого хода, клапана и некоторые пути в карбюраторе, то есть его камеры и дроссельная заслонка совершенно бездействуют.

В итоге, удаётся:

  • во-первых, экономить топливо при работе мотора в ранее отмеченном режиме принудительного хода;
  • во-вторых, организовать стабильный и оптимизированный холостой ход;
  • в-третьих, обеспечить качественный и беспроблемный для водителя прогрев двигателя при запуске (посредством усиления подачи топлива тем же ЭПХХ);
  • в-четвёртых, исключить лишнее функционирование дроссельной заслонки и ряда других узлов в карбюраторе;
  • и в-пятых, оптимизировать работу мотора целиком, что существенно продлевает срок его службы.

Отметим, что работает экономайзер под контролем специального узла, который называется «блок управления электромагнитным клапаном карбюратора». Данное устройство постоянно анализирует работу мотора, основываясь на показаниях датчиков (оборотов, температуры двигателя и т.п.), после чего подавая соответствующие указания непосредственно ЭПХХ, а он, в свою очередь, посредством движения штока (небольшой иглы) либо перекрывает до нужного положения каналы подачи топлива на холостом ходу, либо наоборот их открывает. В целом, особых сложностей в работающим экономайзере нет, что наглядно показывает представленное выше описание устройства. Для ещё большей наглядности всего описанного рекомендуем ознакомиться со следующими картинками:

Схема подключения типового ЭПХХ:

Принцип работы клапана совместно с блоком управления:

Возможные неполадки с ЭПХХ

Электромагнитный клапан – вполне добротный в плане работы узел автомобиля. Особо частых поломок с ним не случается, но и «бесперебойным трудягой» его не назвать. В связи с тем, что на территории постсоветского пространства чаще всего используются электромагнитные клапаны карбюраторов «Солекс» и карбюраторов «ДААЗ», то давайте рассмотрим типовые неполадки ЭПХХ именно на их примере. В общем виде перечень нередко встречающихся поломок узла таков:

  • Забился жиклёр клапана. Происходит такая неполадка, как правило, совместно с общим расстройством работы карбюратора на всех режимах раскрутки мотора. Устраняется данная неисправность путём разборки карбюратора на отдельные составляющие, его продувки и иной прочистки. При этом отдельное внимание стоит уделить именно жиклёру ЭПХХ, а также каналам карбюратора, которые с ним взаимодействуют;
  • Шток (игла) клапана застряла в одном положении или иные составляющие устройства вышли из строя (пружинка, сердечник и т.п.). Проявляется неисправность такого рода в виде отсутствия признаков «жизни» у экономайзера. Неисправный ЭПХХ в подобном случае зачастую ремонту не поддаётся. Однако в некоторых ситуациях помогают снятие клапана с карбюратора, его продувка и последующее подключение к альтернативному источнику тока. Если узел вновь не поддаёт признаков «жизни», то замена неизбежна;
  • «Пробился» провод подключения. Проблема типовая, происходящая зачастую из-за низкого качества производства ЭПХХ и его проводов. Диагностируется эта «болячка» посредством подключения клапана к источнику тока вне автомобильной системы и проверки его работы при движении провода подключения в разных направлениях. Лечению она, как правило, не поддаётся, однако в качестве спасительной меры можно попробовать просто заменить провод, обрезав его как можно ближе к корпусу экономайзера, или иным способом устранить пробоину в цепи;
  • Неисправен блок управления ЭПХХ. В этой ситуации сам клапан работает исправно при подключении его к альтернативному источнику питания, однако во время нахождения в карбюраторе он не функционирует вовсе. Решается такая проблема путём замены подключаемого к ЭПХХ блока управления, не иначе;
  • Электромагнитный клапан имеет производственный брак. Такое, к слову, встречается нередко. Удивительно, но бывали случаи, когда из 10-20 ЭПХХ, лежащих на прилавке магазина, работали только 1-2 экземпляра. Если вы стали жертвой подобного случая, то достаточно просто заменить клапан на новый и не беспокоиться.

Все перечисленные выше поломки имеют один ярко выраженный симптом, а точнее – полное или частичное отсутствие стабильности в холостом ходе автомобиля. Если такие проблемы случились именно с вами, то, в первую очередь, стоит проверить электромагнитный клапан и его блок управления, а уже потом основные жиклёры холостого хода и другие составляющие карбюратора.

Диагностика неисправности

Многие не особо подкованные в авторемонтной сфере люди часто задаются вопросом – «Как собственно проверить: исправен ли электромагнитный клапан, его блок управления или нет?» Особых сложностей в этом не имеется, однако ряд базовых нюансов есть. Для того чтобы каждый читатель нашего ресурса понял, как именно выявлять неполадки с ЭПХХ, наш ресурс подготовил пошаговый алгоритм диагностики. В общем виде он следующий:

Читайте также:
Сенсорный выключатель RGB-LIGHT SLAYDER своими руками

  1. Сначала необходимо найти место, где располагается экономайзер конкретно на вашей марке автомобиля. Зачастую он выглядит так;
  2. Затем заведите мотор, прокатитесь на автомобиле, заглушите и проанализируйте его работу на холостом ходу. Если на всех этапах раскрутки двигателя ХХ даёт сбой, в первую очередь стоит проверить именно электромагнитный клапан;
  3. Далее, когда мотор остыл, необходимо завести его повторно и отключить ЭПХХ от карбюратора, аккуратно пинцетом сняв соответствующую клемму. После чего стоит понаблюдать за работой двигателя. Если всё в норме и шток (игла) экономайзера выдвинулась, то вряд ли он неисправен. В таком случае, скорее всего, проблема с основным жиклёром холостого хода или другими узлами карбюратора. Если же шток не выдвинулся и автомобиль быстро заглох после отключения экономайзера, то последний неисправен;
  4. Теперь необходимо снять ЭПХХ с автомобиля и подключить его к альтернативному источнику питания (например, напрямую к АКБ). По истечению 10-120 секунд шток работающего экономайзера должен выдвинуться и характерно щёлкнуть. Если это происходит, но при подключении в сети автомобиля игла ЭПХХ не выдвигается, то неисправен либо его блок управления, либо проводка клапана. Если же шток стоит на месте в обоих случаях, то экономайзер нужно менять, ну или пытаться отремонтировать.

Не забывайте, что окончательную неисправность электромагнитного клапана можно определить лишь в том случае, если все остальные узлы карбюратора гарантировано исправны. При иных обстоятельствах конкретных выводов делать не стоит.

На этом, пожалуй, наиболее важная информация по ЭПХХ современных карбюраторов подошла к концу. Надеемся, представленный выше материал был для вас полезен. Удачи на дорогах и в ремонте!

Схема блока управления электромагнитным клапаном

ВАЗ-21213 (Нива). Система управления электромагнитным клапаном карбюратора

7.13.1. Проверка блока управления

Схема соединений системы управления электромагнитным клапаном карбюратора

1 – выключатель зажигания;
2 – реле зажигания;
3 – катушка зажигания;
4 – блок управления;
5 – электромагнитный клапан;
6 – концевой выключатель карбюратора

Схема проверки блока управления

1 – блок управления;
2 – переходной разъем с вольтметром;
А – к жгуту проводов автомобиля

Исправный блок 4 управления должен отключать клапан 5 при увеличении частоты вращения коленчатого вала до 2100 мин–1 и включать клапан при снижении частоты вращения до 1900 мин–1, если концевой выключатель карбюратора замкнут на массу.

Перед проверкой работоспособности блока убедитесь в правильности подключения к нему проводов.

Работоспособность блока управления проверяется с помощью вольтметра (с пределами измерения 0–15 В) в следующем порядке:

– отсоедините зеленый провод от концевого выключателя карбюратора и соедините наконечник этого провода с массой;
– подключите к блоку управления вольтметр с помощью специального переходного разъема 2 (см. рис. Схема проверки блока управления);
– запустите двигатель и, постепенно увеличивая частоту вращения, следите за показаниями вольтметра: после запуска двигателя вольтметр должен показывать напряжение не менее 10 В, а в момент отключения клапана – скачкообразное снижение напряжения до величины не более 0,5 В;
– после отключения клапана постепенно снижайте частоту вращения до включения клапана: вольтметр должен показать при этом скачкообразное увеличение напряжения не менее, чем до 10 В;
– установите частоту вращения коленчатого вала в пределах 2200–2300 мин–1, отсоедините от массы наконечник провода, идущего к концевому выключателю карбюратора, а затем снова соедините его с массой; при отсоединении провода от массы клапан должен включаться, а при соединении с массой – отключаться.

Читайте также:
Схема термостата

Предупреждение
Допускается проверять блок без вольтметра по характерному стуку клапана при отключении и включении.

7.13.1. Проверка блока управления

Схема соединений системы управления электромагнитным клапаном карбюратора

1 – выключатель зажигания;
2 – реле зажигания;
3 – катушка зажигания;
4 – блок управления;
5 – электромагнитный клапан;
6 – концевой выключатель карбюратора

Схема проверки блока управления

1 – блок управления;
2 – переходной разъем с вольтметром;
А – к жгуту проводов автомобиля

Исправный блок 4 управления должен отключать клапан 5 при увеличении частоты вращения коленчатого вала до 2100 мин–1 и включать клапан при снижении частоты вращения до 1900 мин–1, если концевой выключатель карбюратора замкнут на массу.

Перед проверкой работоспособности блока убедитесь в правильности подключения к нему проводов.

Работоспособность блока управления проверяется с помощью вольтметра (с пределами измерения 0–15 В) в следующем порядке:

– отсоедините зеленый провод от концевого выключателя карбюратора и соедините наконечник этого провода с массой;
– подключите к блоку управления вольтметр с помощью специального переходного разъема 2 (см. рис. Схема проверки блока управления);
– запустите двигатель и, постепенно увеличивая частоту вращения, следите за показаниями вольтметра: после запуска двигателя вольтметр должен показывать напряжение не менее 10 В, а в момент отключения клапана – скачкообразное снижение напряжения до величины не более 0,5 В;
– после отключения клапана постепенно снижайте частоту вращения до включения клапана: вольтметр должен показать при этом скачкообразное увеличение напряжения не менее, чем до 10 В;
– установите частоту вращения коленчатого вала в пределах 2200–2300 мин–1, отсоедините от массы наконечник провода, идущего к концевому выключателю карбюратора, а затем снова соедините его с массой; при отсоединении провода от массы клапан должен включаться, а при соединении с массой – отключаться.

Предупреждение
Допускается проверять блок без вольтметра по характерному стуку клапана при отключении и включении.

Блок управления ЭПХХ карбюратора Солекс

Карбюратор Солекс 2108, 21081, 21083 оборудован системой ЭПХХ (экономайзер принудительного холостого хода).

Назначение блока управления ЭМК ЭПХХ

Блок управления ЭПХХ предназначен для своевременной подачи напряжения (включения) и обесточивания (выключения) электромагнитного клапана (ЭМК) карбюратора Солекс 2108, 21081, 21083 при наступлении или прекращении режима принудительного холостого хода двигателя (ПХХ) — торможения двигателем.

Где установлен блок управления?

Блок управления установлен на щите моторного отсека, слева по ходу автомобиля.

Блок управления системы экономайзера принудительного холостого хода (ЭПХХ) карбюратора Солекс установлен на щите моторного отсека

Как работает блок управления ЭМК ЭПХХ?

Для определения наступления режима принудительного холостого хода блок управления ЭПХХ получает два сигнала.

— Дроссельные заслонки закрыты

Сигнал поступает от датчика-винта регулировки «количества» топливной смеси. Его контакт касается ребра рычага на дроссельной заслонки первой камеры карбюратора («масса»), если она закрыта. На контакт надет наконечник провода, идущий к блоку управления.

Датчик-винт регулировки «количества» топливной смеси Солекс 2108, 21081, 21083

— Частота вращения коленчатого вала превысила 2000 об/мин

Сигнал частоты вращения коленчатого вала приходит с вывода «К» катушки зажигания (импульсы в системе зажигания). Это первичная обмотка катушки.

Вывод «К» катушки зажигания системы зажигания автомобилей ВАЗ 2108, 2109, 21099

Получив оба сигнала блок управления обесточивает электромагнитный клапан карбюратора и его игла запирает отверстие в топливном жиклере СХХ. Топливо через систему холостого хода не поступает.

Прекращение режима ПХХ определяется блоком если какое-либо из двух условий не выполняется (либо водитель нажал на педаль газа и разомкнул наконечник винта и рычаг дроссельной заслонки, либо обороты двигателя упали ниже 1800 об/мин). В результате блок управления возобновляет подачу топлива через СХХ подав напряжение на ЭМК (ЭМК втягивает иглу вовнутрь корпуса и открывает топливный жиклер СХХ).

Схема подключения блока управления ЭПХХ Солекс

Неисправности блока управления

Неисправный блок управления ЭПХХ начинает то открывать, то закрывать клапан вне зависимости от поступающих на него сигналов. Появляются рывки и провалы при движении автомобиля. Холостой ход двигателя либо пропадает вовсе, либо двигатель «троит».

Для определения неисправности блока управления можно провести его проверку (заодно проверив всю систему ЭПХХ). Предварительно проверить исправность блока можно сняв и надев наконечник провода на вывод электромагнитного клапана карбюратора и послушав есть ли щелчок. Если щелчка нет, ЭМК не срабатывает, напряжение на него блоком не подается.

Применяемость блока управления в системах ЭПХХ Солекс 2108, 21081, 21083

Примечания и дополнения

Режим принудительного холостого хода (ПХХ) двигателя автомобиля наступает при движении на скорости, с отпущенной педалью газа и включенной передачей — накатом (по ровной дороге, либо на спуске). На этом режиме, в условиях ухудшения горения топливной смеси в цилиндрах (плотность заряда мала, количество остаточных газов велико), необходимо отключать подачу топлива в двигатель, чтобы предотвратить выброс несгоревших углеводородов в атмосферу и попутно слегка сократить расход топлива. Чем и занимается система ЭПХХ с блоком управления.

Читайте также:
Схема регулятора оборотов минидрели

На принудительном холостом ходу автомобиль движется в городском цикле 15-20 процентов времени. Если система обеспечивающая его работу настроена правильно и исправна, то помимо снижения вредности выхлопа получается существенная экономия топлива.

Радиосхемы Схемы электрические принципиальные

Мы в социальных сетях

Главное меню

  • Главная
  • Начинающим
  • Аудиотехника
  • Электроника в быту
  • Антенны и радиоприемники
  • Источники питания
  • Шпионские штучки
  • Световые устройства
  • Приборы и измерения
  • Светодиод и его применение
  • Авто-Мото- Вело электроника
  • Музыкальные центры, магнитолы
  • DVD и домашние кинотеатры
  • Автомагнитолы и прочий автозвук
  • Блоки питания и инверторы ЖК телевизоров
  • Схемы мониторов
  • Схемы телевизоров LCD
  • Схемы телевизоров LED
  • Схемы усилителей и ресиверов
  • Схемы спутниковых ресиверов
  • Инверторы сварочные
  • Справочные материалы
  • Сварка и сварочное оборудование
  • Отечественная техника 20 века
  • Программаторы
  • Устройства на микроконтроллерах
  • Для компьютера
  • Телефония
  • Медицина и здоровье
  • Радиоуправление
  • Бытовая автоматика
  • Бытовая техника
  • Оргтехника
  • Ноутбуки
  • Ардуино

Реклама на сайте

Управление электромагнитным клапаном

Электроника в быту

А. БУРЦЕВ, г. Новороссийск
Радио, 1998 год, №7

Электромагнитные клапаны в системах водоснабжения, предотвращающие возможное затопление квартир, подвалов или иных подсобных помещений, пока, к сожалению, не нашли широкого применения а быту. Отчасти объясняется это тем, что время работы электромагнита под напряжением не ограничено, что может повлечь выход его из строя или даже возгорание. В связи с этим представляет интерес предлагаемая электронная система управления электромагнитным клапаном, которая, по мнению автора статьи, позволяет избежать подобных неприятностей.

Отличительной особенностью описываемого устройства является весьма малое потребление им тока от источника питания в рабочем режиме, когда клапан открыт. Это дает возможность использовать автономный источник энергии в течение длительного времени.

Схема системы управления электромагнитным клапаном показана на рис. 1, а доработанная конструкция клапана — на рис. 2. Принцип действия системы основан на взаимодействии полей электромагнита клапана и дополняющего его постоянного магнита.

Устройство состоит из четырех блоков функционального назначения: сигнализатора влажности, таймера с электромагнитным реле на выходе, преобразователя напряжения источника питания и блока управления электромагнитным клапаном. Чтобы клапан включить, надо нажать на кнопку SB1 и удерживать ее в таком состоянии 4. 5 с. В это время замкнувшиеся контакты SB1.1 кнопки подключают к источнику питания преобразователь напряжения, собранный на элементах микросхемы DD2. С выхода умножителя на 3, образованного диодами VD2 — VD5 и конденсаторами С7— С10, напряжение, повышенное до 27 В, поступает через контакты SB1.4 на конденсатор С11 и заряжает его. Спустя 4. 5 с, когда конденсатор накопит энергии, достаточной для включения электромагнитного клапана Y1, пусковая кнопка должна быть отпущена.

Заряженный конденсатор С11 разряжается на электромагнит клапана через контакты SB1.3. Вокруг него возникает магнитное поле, которое перемещает золотник в штоке клапана, и он открывается. Когда же воздействие электромагнитного поля прекратится, золотник станет удерживаться магнитным полем постоянного магнита. В открытом состоянии клапан может находиться неограниченно долгое время, не потребляя энергии от источника питания, пока на контакты датчика, подключенного ко входу сигнализатора влажности, не попадет влага.

Элементы DD1.1 и DD1.2, генератор импульсов, собранный на элементах DD1.3, DD1.4, тринистор VS1 и, конечно, датчик, установленный в точке контроля влажности, образуют сигнализатор влажности. Светодиод HL1, подключенный к выходу генератора импульсов, сигнализирует о наличии влаги периодическими вспышками. Их частота (примерно 1 Гц) зависит от номиналов резистора R3 и конденсатора С2.

При срабатывании сигнализатора влажности напряжение источника питания через открытый тринистор VS1 и контакты SB1.2 пусковой кнопки поступает на интегральный таймер DA1 и датчик запускающих сигналов, функцию которого выполняет транзистор VT1. В цепи базы транзистора возникает ток, который заряжает конденсатор СЗ и открывает этот транзистор на время, определяемое параметрами цепочки C3R5. Импульс отрицательной полярности с коллектора транзистора VT1 поступает на вход интегрального таймера DA1 и запускает его. При этом на выходе таймера появляется напряжение высокого уровня, в результате чего загорается светодиод HL2, открывается транзистор VT2 и срабатывает реле К1 на время, определяемое номиналами времязадающей цепи C4R8. Теперь через замкнувшиеся контакты реле К1.1 энергия источника питания снова поступает на преобразователь напряжения, но заряжается конденсатор С12 через контакты SB1.3 пусковой кнопки, контакты К1.2 реле и обмотку электромагнита клапана.

По истечении 4. 5 с таймер переключится в исходное состояние, обмотка реле К1 обесточится и конденсатор С12 разрядится на электромагнит клапана Y1 через контакты реле К1.3, но теперь в обратном направлении по отношению к разрядке конденсатора С11. Возникнет противодействие магнитных полей, и золотник штока клапана под воздействием пружины перекроет воду.

Читайте также:
Плата для аниматроники

Детали блоков устройства смонтированы на четырех самостоятельных платах размерами 40×40 мм (рис. 3), выполненных из одностороннего фольгированного стеклотекстолита толщиной 2 мм. Все резисторы — МЛТ-0,125. Конденсаторы СЗ, С4 и С7 — С12 — оксидные К50-6, а С1, С2, С5 и С6 — КМ, КЛС. Диоды VD2 — VD5 — германиевые серий Д311, ГД402. Реле К1 — РЭС9 (паспорт РС4.524.202). Переключатель SB1 — П2К без фиксации в нажатом положении.

Электромагнитный клапан, рассчитанный на постоянное напряжение 24 В, желательно применить промышленного производства, например, клапан от автоматической стиральной машины «Вятка». Пригодна и самодельная конструкция, открывающая воду при подаче напряжения на обмотку электромагнита клапана. Доработка готового электромагнитного клапана заключается в дополнении его магнитной системой и изготовлении цилиндрического тонкостенного кожуха из дюралюминия или другого немагнитного материала. Магнитная система, показанная на рис. 2, может быть от динамической головки прямого излучения 1ГД-48-140 (ГОСТ 9010 — 78), предварительно освобожденная от фланца и керна. Магнит с ярмом крепят внутри кожуха винтами или клеем. В кожухе просверливают два отверстия для проводников обмотки электромагнита, после чего конструкцию устанавливают на штоке клапана.

Датчик влажности представляет собой два металлических стержня длиной по 10 мм, изолированных один от другого, которые соединяют с входом сигнализатора отрезками тонкого многожильного провода в изоляции длиной до 5 м. К сигнализатору допустимо подключить параллельно несколько датчиков и расположить их в разных местах помещения.

Конденсатор С1 защищает сигнализатор от помех электромагнитных излучений, наводимых в соединительных проводах датчика с сигнализатором.

Для питания устройства можно использовать маломощный сетевой блок, работающий совместно с батареей “Корунд” или аккумуляторной 7Д-0,125 в буферном режиме, или две батареи 3336, соединив их последовательно.

Ток, потребляемый устройством, столь мал, что источник из двух батарей 3336 будет работать в течение всего срока их хранения.

Налаживание устройства сводится к подбору конденсатора С4 и резистора R8 во входной цепи таймера DA1 таким образом, чтобы конденсатору С12 хватало времени накопить достаточно энергии, необходимой для выключения клапана. За 4. 5 с он должен зарядится до напряжения 20. 22 В.

При исправных деталях и безошибочном монтаже устройство готово к работе. А если после включения питания клапан не откроется, это укажет на необходимость поменять местами подключение проводников электромагнита на разъемах Х1 и Х2.

Клапан устанавливают на трубопроводе в горизонтальном положении.

Следует отметить, что клапан такой конструкции можно применить для автоматической поливки грядок на приусадебном или садоводческом хозяйстве или создать на его основе регулятор уровня воды в баке водокачки.

Эпхх ваз 2109 карбюратор схема подключения

Карбюратор ВАЗ 2109: схема и особенности ремонта

На автомобиле ВАЗ 2109, как и на большей части представителей «классики», устанавливается карбюратор «Солекс». Среди своих «коллег», «Озон», «Вебер» и т.д., его характеристики значительно лучше, поэтому выбор пал на то, чтоб его и поставить на данный ВАЗ.

Устройство

Карбюратор ВАЗ 2109, состоит из двух основных элементов – корпус и крышка. Все детали, в основном, находятся в корпусе (насос, жиклеры, поплавок и т.д.). Также, в систему питания, с которой может быть связан ремонт, входят: свечи, ЭПХХ, и так далее.

Когда насос качает топливо из бака, оно, первым делом, попадает в блок поплавковой камеры карбюратора. Эта камера, также, называется – первой или первичной. Она служит для того, чтоб поддерживать оптимальный уровень бензина, при котором карбюратор сможет нормально работать и стабильно держать обороты. На входе в камеру, стоит специальный штуцер, через который проходит топливо. Его количество контролирует клапан, а также, несколько поплавков. При слабом нажатии на педаль газа, количество бензина, идущего в камеру, и соответственно его давление, резко уменьшается. Для того, чтоб горючая смесь нормально попадала в камеру, при низком давлении, клапан поднимается выше, освобождая путь. Данный процесс беспрерывный, и работает столько, сколько и двигатель. Устройство клапана, тесно связано с поплавком. Такая схема управления, исключает шанс перелива свечи.

При резком нажатии на педаль газа, топливо в большом количестве поступает в блок первичной камеры. Для того, чтоб уберечь свечи, существует вторичная камера. Она открывается в том случае, когда у двигателя высокие обороты. Первая камера, при ускоренном движении топлива, переливает его во вторую, и обеспечивает равномерную, обогащенную смесь, при попадании в цилиндр, тем самым предотвращая провалы педали.

Для нормальной работы двигателя ВАЗ 2109, просто бензина недостаточно. Карбюратор, также, должен получать и воздух. Он поступает через клапан в блок поплавковой камеры, где перемешивается с топливом, и образует горючую смесь.

Читайте также:
Терморегулятор для теплиц

Помимо того, когда автомобиль ВАЗ 2109 находится в движении, он также может быть в недвижимом состоянии, но при работающем двигателе. Тут уже срабатывает такое устройство, как холостой ход. Он регулируется отдельно, подавая топливо через электромагнитный клапан в поплавковую камеру. Схема управления холостым ходом, включает в себя электронный прибор – экономайзер. Он активирует электромагнитный клапан при оборотах, менее 1700 об/мин, и деактивирует при нажатии на педаль газа.

Очень важно знать, что питание, не всегда проходит через экономайзер. Иногда, схема холостого хода обходит данное устройство, включая электромагнитный клапан напрямую, от зажигания.

Также, карбюратор имеет такое устройство, как: блок управления ЭПХХ. Он служит для уменьшения количества выхлопных газов, и для снижения расхода топлива. Блок управления ЭПХХ, на автомобиле ВАЗ 2109 крепится отдельно, от всей системы питания. Например, когда автомобиль движется с спуска, находясь на включенной передаче, педаль газа полностью отпущена. При этом, дроссельная заслонка закрывается, и блок управления ЭПХХ активизируется, поднимая электромагнитный клапан.

Эксплуатация и ремонт

Карбюратор ВАЗ 2109, как и все остальные детали, имеет свойство ломаться. Обычно, поломка включает в себя выход из строя, какой не будь запчасти. В таких случаях, обычно помогает ремонт.

Первым, что может сломаться, считается ускорительный насос. Его предназначение – обогащать топливную смесь, в независимости от подачи воздуха, при открытии дроссельных заслонок. Если при резком нажатии на педаль газа, автомобиль дергается, значит ему либо мало топлива, и в подаче происходят значительные провалы, либо его наоборот, слишком много, и оно переливает свечи. Так вот, во избежание данной проблемы, используется ускорительный насос. Он регулирует точное количество топлива, необходимого для нормальной работы двигателя, даже при резком нажатии на газ.

Ускорительный насос более часто забивается осадками, нежели ломается, и тогда, ремонт не нужен, а достаточно просто провести прочистку. Но, если дело не в этом, а все-таки существует поломка, то насос нужно срочно чинить, иначе эксплуатация двигателя автомобиля ВАЗ 2109 будет невозможна, а провалы педали Вам обеспечены.

Первыми симптомами того, что насос неисправен является то, что при нажатии на педаль, обороты не набираются стабильно, а плавают. Это связано с нехваткой, или наоборот переизбытком топлива. Свечи не успевают выпаливать весь бензин, и их попросту заливает, поэтому автомобиль на ходу дергается. Также, может наблюдаться провал педали при нажатии.

Ремонт при такой поломке следующий:

Вынимаем распылитель;
Потрясите его. Если внутри будет характерный стук шарика, то значит распылитель рабочий, если нет, то это и будет причиной, почему случился провал педали;
Насос имеет довольно тяжелый, по строению, блок с деталями. Большое количество отверстий и каналов – увеличивает шанс того, что насос забьется, и провал педали будет неминуем. Если отверстия засорились, то ремонт здесь не нужен. Достаточно просто купить жидкость для чистки карбюратора, и использовать его для продувки каналов.

Если ВАЗ 2109 дергается при движении на холостом ходу, и имеются провалы при резком нажатии на педаль газа, то значит неисправность имеет блок управления ЭПХХ. Его ремонт, в первую очередь зависит от того, какой именно установлен блок управления. Они могут быть 4-ех и 6-ти контактными. Ремонт ЭПХХ должен проводить специалист. Если у Вас нет соответствующих знаний, просто замените деталь на новую.

Причиной того, что ВАЗ 2109 дергается при движении, или вовсе глохнет, а при нажатии на педаль газа происходят провалы, может быть не только карбюратор или блок управления ЭПХХ, а и свечи. При их длительной эксплуатации, на месте контакта появляется нагар. Из-за него, свечи не полностью выпаливают горючее в цилиндре.

Иногда, свечи заливает и на холостом ходу. Это связано с тем, что блок управления ЭПХХ подобран неправильно. Открытие клапана происходит не синхронно, и обороты двигателя плавают. При этом, наблюдаются провалы педали газа, и позднее зажигание. Для того, чтоб понять, какой ЭПХХ лучше ставить, нужно определится с выбором жиклеров карбюратора. От их диаметра зависит тип данного устройства.

Вообще, перед тем, как проводить ремонт карбюратора, убедитесь в том, что обороты плавают именно из-за него. Также, что провалы педали газа, происходят по этой причине. Ведь может быть, всему виной свечи. Если их заливает, то автомобиль будет дергаться и глохнуть. Но в таком случае, причину нужно искать в топливных магистралях, насосе и подобных узлах. Но, это всяко лучше, чем проводить ремонт карбюратора, так как это работа довольно кропотливая.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

–> Авторские электронные модули
–>

–> –>Меню сайта –>

–>Google Translate –>

–> –>Статистика –>

Блок управления пропорциональным клапаном гидравлической системы.
Этот модуль был специально разработан мною, для восстановления работоспособности техники, после отказа работы электроники ЭБУ (Электронного Блока Управления), и по какой-то причине невозможно его восстановить. ЭБУ отвечало за разные решения по безопасности, и плавности управления пропорциональными клапанами гидравлической системы , плавного старта – рабочий режим – плавная остановка. Если вы попытаетесь управлять пропорциональным клапаном напрямую, просто подав питание на электромагнитную катушку, то клапан откроется сразу, и появится мощное “дёргание”, при старте – и при остановке. Что-бы устранить проблему поможет этот модуль. Модуль самостоятельный, и не нуждается в ЭБУ. То-есть с помощью таких модулей вы решаете проблему плавного старта – рабочего режима – плавной остановки, и фактически можете отказаться от ЭБУ. Управлять модулем можно: Тумблерами, кнопками, аналоговыми джойстиками, радио управлением, просто подав плюс питания на модуль как управляющий сигнал. Модуль управляет пропорциональным клапаном при помощи ШИМ. Принципы работы ШИМ и пропорциональным клапаном описываю ниже:
Принцип работы пропорционального электромагнитного клапана (Рисунок 1).
В этом устройстве (рис. 1) в отличие от дискретных электромагнитов постоянного тока предусмотрена конусная вставка 1 из немагнитного материала, изменяющая форму линий магнитного поля. В результате управляющий ток в катушке 2 создает электромагнитное поле, вызывающее продольное смещение ферромагнитного якоря 3 с силой, пропорциональной силе тока. Якорь взаимодействует с подпружиненным запорно-регулирующим элементом гидроаппарата (золотником, конусом предохранительного клапана, втулкой дросселя), причем наложение линейной характеристики пружины на силовую характеристику магнита показывает, что осевое смещение (ход) якоря пропорционально току управления. Управление пропорциональным электромагнитным клапаном производится с помощью электронной схемой управления с ШИМ сигналом,и достигается за счет широтно-импульсной модуляции.
Принцип регулирования мощности в нагрузке с помощью ШИМ.
Широтно-Импульсная Модуляция – это способ кодирования аналогового сигнала путём изменения ширины (длительности) прямоугольных импульсов несущей частоты. На Рис. 2 представлены типичные графики ШИМ сигнала при разной скважности.
Описание модуля.
Модуль подключается согласно выставленной схемы. После подключения модуля, пропорциональным клапаном возможно управлять двумя способами: 1. Ручном режиме. 2 .Автоматическом режиме. После подключения модуля его надо отрегулировать под вашу гидравлическую систему. У модуля есть 4 канала AЦП (аналого-цифровой преобразователь, далее АЦП). В чем заключается принцип работы АЦП микроконтроллера? Аналого-цифровые преобразователи являются приборами, которые физическую величину превращают в соответствующее числовое представление. То-есть при помощи изменения сопротивления трех резисторов, превращают физическую величину в соответствующее числовое представление. Каждый канал АЦП отвечает за свой параметр:
Первый канал АЦП – При помощи переменного резистора (потенциометра) подключённого к этому каналу АЦП, можно регулировать в РУЧНОМ РЕЖИМЕ
Второй канал АЦП – отвечает за минимальную выдаваемую мощность. И можно отрегулировать их в пределах: от 0% – до 100% с дискретностью 0,39%. И служит для регулировки притягивания якоря катушки ДО зоны начала открывания. Регулировки используются как в ручном так и в автоматическом режиме.
Третий канал АЦП – отвечает за максимальную выдаваемую мощность. И можно отрегулировать их в пределах: от 0% – до 100% с дискретностью 0,39%. И служит для регулировки притягивания якоря катушки и ограничения открывания канала пропорционального клапана. Регулировки используются как в ручном так и в автоматическом режиме.
Четвертый канал АЦП – отвечает за плавность старта и остановки. И может быть отрегулирован в пределах: от 1 секунды – до 60 секунд, то-есть полная скорость развивается плавно в АВТОМАТИЧЕСКОМ РЕЖИМЕ, за время выставленное этим параметром (параметр активен только в автоматическом режиме), остановка происходит автоматически после отсутствия последнего положительного сигнала на терминал блоке, с плавной остановкой, в 10 раз быстрее чем старт, чтобы смягчить возможный гидроудар. Если плавная остановка не нужна – укажите это при заказе, будет откорректирована прошивка.
Все регулировки делаются путём прокручивания отвёрткой винтиков много-оборотистых резисторов для точной настройки параметров. Прокручивание по часовой стрелки – увеличивает параметр, прокручивание против часовой стрелки – уменьшает параметр. После настройки трёх параметров АЦП, модуль готов к работе. Клапан нужен именно пропорциональный (ну это и так понятно), ведь обычный электроклапан имеет только два состояния: Открытый и закрытый. Модуль имеет защиту от переплюсовки, неправильной подачи питания.
Для перевода управления модуля в автоматическом режиме, надо на плате установить перемычку (JAMPER), как только установите перемычку рядом с ним начнёт светится красный светодиод LED1, сигнализируя вход в автоматический режим управления, плавное возрастание ШИМ сигнала начнётся в тот момент когда на любой контакт терминала Т1-Т8 поступит +12 или +24 вольта от команд управления спецтехники. На терминалах присутствует диодная развязка. При поступления положительного сигнала – зажигается красный светодиод LED2. Когда автоматический режим активен – первый канал АЦП отключён, и на него микроконтроллер не реагирует, но активен четвёртый канал АЦП которым можно отрегулировать скорость возрастания ШИМ сигнала. Второй и третий канал АЦП активны как в ручном, так и в автоматическом режиме. В ручном режиме, наоборот, Первый-второй-третий канал АЦП активны а четвёртый отключён. Для подключения ручного режима – надо удалить перемычку с платы, при этом LED1 погаснет.
Модуль снабжен 10 сегментным LED индикатором (сейчас в продаже есть 10 сегментные индикаторы в одном корпусе, и они дешевле чем собирать их из 10 отдельных светодиодов и эстетически смотрятся лучше, но в случае выхода из строя одного сегмента, придется менять весь индикатор, и затрудняет ремонт). Каждый сегмент индикатора соответствует 10% выдаваемой мощности. На LED индикаторе выводится одночасно информация по трём параметрам, В РУЧНОМ РЕЖИМЕ: АЦП-2 (Минимально), АЦП-3 (Максимально), АЦП-1 (Рабочий ручной режим). И В АВТОМАТИЧЕСКОМ РЕЖИМЕ: АЦП-2 (Минимально), АЦП-3 (Максимально), и мощность нарастания и уменьшения ШИМ сигнала. И это всё в реальном времени. На видео можно более наглядно увидеть суть чтения параметров, хоть индикатор не задумывался для получения высокоточной информации, и так понятно что с 10 сегментного индикатора невозможно этого добиться. Индикатор предназначен для приблизительного понятия что происходит в момент работы или настройки модуля, но для работы высокой точности вывода информации и не нужно, но каналы АЦП имеют достаточно высокую дискретность чтобы добиться тонкой настройки параметров.
Модуль можно заказать с частотой ШИМ в двух вариантах: 244 Hz, 488 Hz, если клиент не указывает этот параметр при заказе – тогда будет отправлен вариант 488 Hz.
А так же частоту работы ШИМ можно регулировать самому без перепрошивки модуля, для этого достаточно заменить кварц на необходимый из этой таблицы чтобы в результате получить необходимую частоту работы ШИМ сигнала. Обратите внимание: Первое значение это частота кварца. Второе значение это получаемая частота. Третье значение это частота ШИМ которое можно получить но только путём перепрошивки, и этот параметр могу изменить только я в самой прошивке. Для этого можете связаться со мной.

Читайте также:
Датчик уровня воды с выносными электродами

КВАРЦ / частота ШИМ / (требует изменения в прошивке)

1 мГц = 61 Hz – (и до 122 Hz в прошивке).
2 мГц = 122 Hz – (и до 200 Hz в прошивке).
3.27 мГц = 200 Hz – (и до 244 Hz в прошивке).
4 мГц = 244 Hz – (и до 305 Hz в прошивке).
5 мГц = 305 Hz – (и до 488 Hz в прошивке).
8 мГц = 488 Hz – (и до 610 Hz в прошивке).
10 мГц = 610 Hz -( и до 732 Hz в прошивке).
12 мГц = 732 Hz – (и до 1 KHz в прошивке).

Технические характеристики:
Рабочее напряжение: от 12V – до24V
Выход: 1
Максимальная нагрузка на выход: 10А
АЦП каналов: 4
1 АЦП (ручной режим): от 0% – до 100% с дискретностью 0,39%. 255 шагов.
2 АЦП (мин): от 0% – до 100% с дискретностью 0,39%. 255 шагов.
3 АЦП (мах): от 0% – до 100% с дискретностью 0,39%. 255 шагов.
4 АЦП (авто. режим): от 1 секунды – до 60 секунд с дискретностью 0,24сек. 255 шагов.
Индикация LED: Да, 10 сегментный, от 0% – до 100% с дискретностью 10%
Частота ШИМ: 244 Hz*, 488 Hz*. (*указать нужное)
Габаритные размеры, ДхШхВ, мм: 83х60х30
Код товара (артикул): UPK

Комплектация: Модуль, инструкция, схема подключения.


(Видео настроек модуля для управления пропорциональными клапанами которые управляются силой тока).

Электромагнитный бензиновый клапан — устройство и предназначение. Электромагнитный клапан карбюратора, блок управления солекс, дааз, принцип работы и схема подключения, как проверить неисправности и зачем глушить.

Электронное управление карбюратором в своём типовом варианте имеет несколько составляющих узлов, среди которых наиважнейшая роль отведена электромагнитному клапану. Данный элемент топливораспределительного механизма отвечает за стабилизацию и тонкую настройку холостого хода мотора, что в итоге позволяет экономить владельцу карбюраторного агрегата десятки тысяч рублей на топливе ежегодно. Более подробно о том, что это за чудо-узел, как он работает и каким поломкам подвержен, поговорим в представленном ниже материале.

Устройство и принцип работы электромагнитного клапана

Электромагнитный клапан, также называемый экономайзером принудительного холостого хода (ЭПХХ) – неотъемлемая составляющая любого карбюратора современных автомобилей. Начало активного использования этого узла приходится на 80-е годы прошлого столетия, когда «битва» между инжекторными и карбюраторными агрегатами обострилась. Во многом это связано с тем, что первые имели заметно меньший расход топлива, а это уже подкупало большее количество автолюбителей.

Читайте также:
Регулятор скорости двигателя переменного тока

Дабы минимизировать расход карбюраторных моторов автомобильные инженеры принялись за их активную электронизацию. В нескольких словах, суть последней заключалась в том, чтобы посредством использования электронных устройств понизить показатели расхода горючего. В итоге, электронизация вылилась в появлении электромагнитного клапана карбюратора, а также ряда других электрических девайсов в конструкции данного узла. Но зачем это было нужно и как помогло конкуренции карбюраторных моторов с инжекторными? Для того чтобы ответить на такой вопрос, стоит обратить внимание на принцип работы ЭПХХ.

Итак, электромагнитный клапан карбюратора – это устройство, работающее от электрического тока и выполняющее вполне конкретные функции. Точнее, работает оно для организации стабильного и оптимального холостого хода в, так называемом, принудительном режиме работы мотора. Суть оптимизации заключается в том, что при работе двигателя в режимах, не требующих потребления топлива (переход на передачу пониже, качение по инерции и т.п.), ЭПХХ отключает его подачу, совершенно не привлекая к движению дроссельную заслонку. Происходит это посредством передачи топлива по специальным каналам на холостом ходу. В ходе данной транспортировки функционирует лишь жиклёры холостого хода, клапана и некоторые пути в карбюраторе, то есть его камеры и дроссельная заслонка совершенно бездействуют.

В итоге, удаётся:

  • во-первых, экономить топливо при работе мотора в ранее отмеченном режиме принудительного хода;
  • во-вторых, организовать стабильный и оптимизированный холостой ход;
  • в-третьих, обеспечить качественный и беспроблемный для водителя прогрев двигателя при запуске (посредством усиления подачи топлива тем же ЭПХХ);
  • в-четвёртых, исключить лишнее функционирование дроссельной заслонки и ряда других узлов в карбюраторе;
  • и в-пятых, оптимизировать работу мотора целиком, что существенно продлевает срок его службы.

Отметим, что работает экономайзер под контролем специального узла, который называется «блок управления электромагнитным клапаном карбюратора». Данное устройство постоянно анализирует работу мотора, основываясь на показаниях датчиков (оборотов, температуры двигателя и т.п.), после чего подавая соответствующие указания непосредственно ЭПХХ, а он, в свою очередь, посредством движения штока (небольшой иглы) либо перекрывает до нужного положения каналы подачи топлива на холостом ходу, либо наоборот их открывает. В целом, особых сложностей в работающим экономайзере нет, что наглядно показывает представленное выше описание устройства. Для ещё большей наглядности всего описанного рекомендуем ознакомиться со следующими картинками:

Читайте также:
Жидкокристаллический экран 16х2 с двигателем LMD18201

Схема подключения типового ЭПХХ:

Принцип работы клапана совместно с блоком управления:

Russia Cars

Схема системы управления электромагнитным клапаном карбюратора

1 – выключатель зажигания; 2 – катушка зажигания; 3 – блок управления; 4 – электромагнитный клапан; 5 – датчик-винт ЭПХХ; А – к источникам питания

Проверка блока управления электромагнитным клапаном карбюратора показана на двигателе мод. 2110.

ПОРЯДОК ВЫПОЛНЕНИЯ 1. Пустите двигатель и оставьте работать на холостом ходу. 2. Разъедините колодку провода датчика-винта ЭПХХ и замкните на «массу» контакт колодки (можно, не разъединяя колодки, замкнуть на «массу» вывод датчика-винта карбюратора). 3. Плавно открывая дроссельную заслонку, увеличьте частоту вращения коленчатого вала свыше 2100 мин–1 и зафиксируйте это положение. При этом должен возникнуть автоколебательный режим работы двигателя, сопровождающийся пульсацией частоты вращения.

Возникновение автоколебательного режима объясняется тем, что при увеличении частоты вращения до 2100 мин–1 разрывается электрическая связь выводов 4 и 6 (рис. 7.20) блока, что вызывает отключение подачи топлива в двигатель. При этом частота вращения снижается и после ее падения ниже 1900 мин–1 восстанавливается указанная связь, т. е. подача топлива возобновляется и частота вращения повышается.

Этот процесс циклически повторяется с периодом 1–2 с.

Если вызвать автоколебательный режим не удается, а электромагнитный клапан не имеет дефекта (проверку клапана см. подраздел 2.17.2.9, пункт 67), то неисправен блок управления и его необходимо заменить. 4. Проверить блок управления можно, непосредственно контролируя по тахометру частоты вращения, при которых происходит срабатывание блока.

Для проверки необходима контрольная лампа 12 В и провода со штекерными наконечниками.

Отсоедините от вывода электромагнитного клапана колодку с проводом. Для обеспечения работы электромагнитного клапана соедините дополнительным проводом его вывод с клеммой «+» аккумуляторной батареи. С контактом колодки, снятой с электромагнитного клапана, соедините один вывод контрольной лампы, другой вывод лампы подсоедините к «массе» автомобиля.

На режиме холостого хода (850±50) мин–1 контрольная лампа должна гореть. При увеличении частоты вращения до 2100 мин–1±5% лампа должна гаснуть и вновь загораться при падении частоты вращения ниже 1900 мин–1±5%.

После проверки подсоедините колодку с проводом к выводу электромагнитного клапана.

5. Ослабьте затяжку десяти болтов крепления головки блока в указанном порядке, затем окончательно выверните болты крепления головки и выньте их вместе с шайбами. 6. Слегка приподнимите головку блока, сдвиньте ее так, чтобы конец распределительно вала вышел из отверстия в задней крышке ремня привода, и снимите головку.

ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ Морозостойкость охлаждающей жидкости зависит от соотношения воды и антифриза ТОСОЛ-А в растворе, которое можно определить по плотности раствора. Новые автомобили КамАЗ заправлены охлаждающей жидко …

Читайте также:
Электронный ключ для дома

Проверка и регулировка стояночного тормоза ОБЩИЕ СВЕДЕНИЯ Периодичность Через каждые 30 000 км пробега проверяйте и при необходимости регулируйте стояночный тормоз. Согласно Правилам дорожного движения стояночный тормоз должен удерживат …

Генератор — Проверка и замена щеткодержателя и конденсатора ОБЩИЕ СВЕДЕНИЯ На генераторе установлен конденсатор типа К73-58-4. Маркировка нанесена сбоку на корпусе конденсатора. Не устанавливайте конденсатор другого типа. ПОРЯДОК ВЫПОЛНЕНИЯ 1. Отсоед …

Возможные неполадки с ЭПХХ

Электромагнитный клапан – вполне добротный в плане работы узел автомобиля. Особо частых поломок с ним не случается, но и «бесперебойным трудягой» его не назвать. В связи с тем, что на территории постсоветского пространства чаще всего используются электромагнитные клапаны карбюраторов «Солекс» и карбюраторов «ДААЗ», то давайте рассмотрим типовые неполадки ЭПХХ именно на их примере. В общем виде перечень нередко встречающихся поломок узла таков:

Все перечисленные выше поломки имеют один ярко выраженный симптом, а точнее – полное или частичное отсутствие стабильности в холостом ходе автомобиля. Если такие проблемы случились именно с вами, то, в первую очередь, стоит проверить электромагнитный клапан и его блок управления, а уже потом основные жиклёры холостого хода и другие составляющие карбюратора.

Проверка и ремонт клапанов

Проверка клапанов – обязательный процесс при диагностике автомобиля. Она поможет отсеять часть вариантов причин неисправности.

Часто так бывает, что игольчатый клапан карбюратора ВАЗ 2109 иногда может просто «залипать». И это становится причиной проблем. Если игольчатый клапан подачи топлива неисправен, его следует прочистить, либо заменить.

Случается такое, что клапан перестаёт работать в очень жаркую погоду. Это может выражаться в том, что автомобиль заводится, но через десять-двадцать секунд глохнет двигатель. Внешне определить причину бывает весьма проблематично.

Иногда в таких случаях помогает постукивание по крышке карбюратора, а затем на ручном приводе бензонасоса делается несколько качков.

Когда игольчатый клапан прекращает свою работу в закрытом состоянии, то внешне ничего не происходит и никаких звуков вы не услышите. А открытый клапан даёт звук бензина, который заполняет поплавковую камеру.

Процесс замены игольчатого клапана карбюратора ВАЗ 2109

Мы рекомендуем не издеваться над автомобилем и клапан заменить. Иначе, рано, или поздно, придётся делать более серьёзный ремонт карбюратора ВАЗ 2109.

Внимание! Замена проводится только на непрогретой машине.

  • Необходимо ослабить болты, крепящие тросик и оплётку привода «подсоса». После этого его можно свободно снимать с карбюратора.
  • Теперь необходимо остабить хомуты, чтобы снять с карбюратора шланг, который подводит бензин и «обратку». Можно отсоединить провод от клапана Экономайзера принудительного холостого хода.
  • Когда вы это всё сделаете, нужно открутить пять винтов, которые крепят крышку карбюратора. При этом очень важно не повредить ни прокладку, ни поплавки. Теперь крышку можно снимать.
  • Переворачиваем крышку так, чтобы поплавки оказались наверху. После этого можно взять шило и выталкиваем ось поплавков, чтобы их снять. Делаем всё аккуратно, во избежание повреждения язычков. Иначе уровень топлива может нарушиться.
  • Теперь снимаем старый клапан. Новые делаются так, что его иголка, это по сути – отдельная деталь. Это очень удобно, потому что теперь, уздечка легко надевается на язычок.
  • Обязательно замочите новую иголку на десять минут в бензине, прежде, чем начнёте установку нового клапана.
  • Присоединяем новый клапан.
  • Иголка надевается на язычок уздечкой. При этом она вставляется в сам корпус. Далее устанавливаются поплавки, с совмещением отверстий под оси кронштейна и на поплавках. Возвращаем на законное место ось поплавков.
  • Теперь крышку можно возвращать на место. Но в идеале – промыть ещё и топливный фильтр. Чтобы это сделать, открутите пробку, которая расположена напротив входного патрубка и вытаскивайте фильтр. После этого его промывают в бензине и ставят на место.
  • Закручиваем винты на крышке карбюратора.
  • Возвращаем на место шланги и тросик, закрепляем.

Рекомендуемая статья: Перегрев двигателя: как сохранить мотор автомобиля?

После этого проблем с залипанием клапана уже точно не будет. При необходимости проверьте электромагнитный клапан карбюратора ВАЗ 2109.

Конструкция и принцип работы электромагнитного клапана

Для производства электромагнитных клапанов используются материалы, соответствующие требованиям ГОСТ и международным стандартам. Электромагнитный клапан состоит из нескольких основных элементов:

Как работает электромагнитный клапан

Принцип работы электромагнитного клапана основан на работе элемента управления — электромагнитной катушки. При отсутствии постоянного или переменного тока под механическим давлением пружины, мембрана (поршень) клапана расположены в седле устройства. При подаче электрического напряжения различной мощности к клеммам соленоида, сердечник вовлекается внутрь катушки, обеспечивая открытие или закрытие протокового отверстия. Обесточивание соленоида приводит к закрытию створок. Конструктивные особенности устройства соленоидного клапана могут меняться, в зависимости от его типа.

Читайте также:
Схема регулятора оборотов минидрели
Типы электромагнитных клапанов

Электромагнитные клапаны распределены на несколько категорий.

По типу рабочего положения выделяют:

    Нормально-открытые клапаны. По умолчанию, затворный элемент находится в открытом положении и не создает препятствий движению потоков.
  • Нормально-закрытые клапаны. Отсутствие напряжения на катушке характеризуется закрытой позицией затвора.
    Бистабильные клапаны. Способны переключаться в открытое или закрытое положение под воздействием электрического импульса.

По принципу действия электромагнитные клапаны разделяют на:

    Клапан прямого действия. смена положений затворного компонента осуществляется под воздействием движения сердечника, при подаче электронапряжения.
    Клапан непрямого действия. Воздействие энергии рабочей среды приводит к открытию и закрытию условного прохода. Управляется дистанционно, под действием пилотного клапана, срабатывающего при подаче электрического тока к катушке.
    Клапан комбинированного действия. Регулирование затвора осуществляется по

принципу поднятия мембраны соленоидного клапана.
По типу присоединения к трубопроводу:

По типу уплотнительной мембраны:

    Мембрана FKM (фтористый каучук). Стандартное уплотнение, применяется для большинства неагрессивных рабочих сред.

Мембрана NBR (бутадиен-нитрильный каучук). Используется в средах продуктов нефтепереработки: бензин, масла, керосин, диз.топливо.

Мембрана EPDM (этилен-пропиленовый каучук). Характеризуется повышенной устойчивостью к температурам, работает в среде химических растворов и соединений: щелочей, спиртов, гликолей, кетона и др.

Правила монтажа и эксплуатации

Любые монтажные работы с клапаном проводятся при отсутствии рабочей среды в системе и обесточивании электрической цепи. Перед началом работ следует очистить трубопровод от механических частиц и взвесей.

Как подключить электромагнитный (соленоидный) клапан. Подключение электромагнитных клапанов в системе производится в горизонтальном положении, катушкой вверх.
    Для правильной работы устройства направление движения среды должно соответствовать указательной стрелке на корпусе.

Установка электромагнитного клапана

производится в месте, доступном для последующего ремонта или обслуживания.
Запрещена установка клапана в местах с высокими показателями конденсации или вибрации, участках с возможным обледенением трубы, вблизи течей и порывов.

Установка дополнительных сетчатых фильтров подходящего типоразмера защитит клапан от попадания загрязнений, и, как следствие, снижения его гидравлических характеристик.

Преимущества электромагнитных клапанов

    Автоматический тип работы

Возможность удаленного управления

Компактность (малые габаритные и весовые показатели)

Длительный срок эксплуатации

Простота монтажа и обслуживания

Причины поломок и методы устранения

Правильная эксплуатация и соблюдение технических параметров, указанных в паспорте изделия обеспечат надежную и длительную работу устройства. В некоторых случаях преждевременные

неисправности электромагнитного клапана возможны по нескольким причинам.

    Снижение герметичности изделия может быть вызвано попаданием механических частиц на седло устройства. Рекомендуется демонтаж и чистка устройства с последующей установкой в системе сетчатого фильтра до клапана.

Выход из строя индукционной катушки может быть обусловлен неправильной мощностью напряжения, подаваемого к клеммам или превышением граничных параметров температуры и давления внутри трубопровода. Следует провести демонтаж устройства и заменить катушку. Попадание влаги на катушку может вызвать короткое замыкание и поломку устройства.

Неполное открытие/закрытие клапана может стать следствием загрязнения управляющего отверстия, дефектами мембраны или прокладки, остаточным напряжением на соленоиде и др.

Ремонт электромагнитного клапана

должен производиться квалифицированным специалистом, имеющим допуск к работе с электрическими сетями. Производство соленоидных клапанов осуществляется на специализированных заводах трубной арматуры, расположенные практически в каждой стране Европы. Одни из ведущим мировым производителем электромагнитных клапанов являются SMART HYDRODYNAMIC SYSTEMS. Стоимость электромагнитного клапана зависит от его функций, конструктивного типа, диаметра резьбы и фирмы- производителя электромагнитных (соленоидных) клапанов. Для определения необходимого вида устройства можно проконсультироваться со специалистами или посмотреть видео электромагнитного клапана.

Электромагнитные клапаны нашли применение в разных сферах промышленности, где они используются для регуляции потоков определенных видов веществ. Конструкция таких механизмов имеет различное строение, которое зависит от конкретного типа изделия.

Покупая клапаны электромагнитные Danfoss, следует обязательно проконсультироваться со специалистом, который уточнит все его основные параметры и сферу применения. Данный вид устройств зарекомендовал себя очень неплохо, что позволяет использовать его при разных условиях работы.

Основные характеристики

Электромагнитные клапаны по принципу работы напоминают обычные запорные механизмы, но перекрытие потока происходит не вручную, а с помощью соленоида. Это позволяет автоматически регулировать данный процесс без вмешательства человека.

Основными конструктивными элементами такого изделия являются:

  • корпус;
  • электромагнит;
  • специальное устройство, с помощью которого осуществляется регуляция потока (поршень или диск).

Работать данное изделие может в различных средах, что позволяет применять его не только с жидкими веществами, но и с газами. Существует несколько видов таких устройств, которые отличаются техническими параметрами, такими, как возможность регуляция потока и пропускная способность.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: